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Abstract

Multi-objective Stochastic Linear bandit (MOSLB) plays a
critical role in the sequential decision-making paradigm,
however, most existing methods focus on the Pareto dom-
inance among different objectives without considering any
priority. In this paper, we study bandit algorithms under
mixed Pareto-lexicographic orders, which can reflect deci-
sion makers’ preferences. We adopt the Grossone approach
to deal with these orders and develop the notion of Pareto-
lexicographic optimality to evaluate the learners’ perfor-
mance. Our work represents a first attempt to address these
important and realistic orders in bandit algorithms. To de-
sign algorithms under these orders, the upper confidence
bound (UCB) policy and the prior free lexicographical fil-
ter are adapted to approximate the optimal arms at each
round. Moreover, the framework of the algorithms involves
two stages in pursuit of the balance between exploration and
exploitation. Theoretical analysis as well as numerical exper-
iments demonstrate the effectiveness of our algorithms.

Introduction
Multi-armed bandit (MAB) model is a general paradigm for
sequential decision-making problems where at each round
the player chooses an action from multiple arms and then
obtains a reward from the environment. The goal of MAB
model is to maximize the total cumulative reward of the cho-
sen arms over T rounds. The MAB model involves various
application (Bouneffouf and Rish 2019), e.g., recommenda-
tion system (Mary, Gaudel, and Preux 2015; Gutowski et al.
2021), clinical trials (Villar, Bowden, and Wason 2015; Du-
rand et al. 2018), etc.

However, not all problems only have an exclusive metric
(objective). A more general case is that the player faces more
than one feedback when places an action, which inherently
complicates the decision-making process. The preference
of different objectives is a critical issue among the multi-
objective multi-armed bandit (MOMAB) problems. Gener-
ally, users would like to maximize all the objectives simulta-
neously in the context that all the objectives are incommen-
surable. In this scenario, different arms are compared based
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on the rewards with Pareto order, and those arms with op-
timal rewards are called Pareto optimal arms, in which the
optimality is judged by Pareto dominance. To gauge the per-
formance of a MOMAB algorithm, Pareto regret was pro-
posed (Drugan and Nowe 2013) based on the gap between
the selected arm and the Pareto optimal arms. The goal of
the algorithm is to select arms that judiciously minimize the
Pareto regret according to historical observations. For ex-
ample, agents in online advertising system have to consider
the click-through rate for exposure as well as the click con-
version for revenue simultaneously (Rodriguez, Posse, and
Zhang 2012).

In some scenarios, the objectives are ranked lexicograph-
ically (Ehrgott 2005), which means that the first objective
holds absolute priority over the second one, which in turn
has higher precedence over the third one, etc. The bandit al-
gorithm for these problems aims to select arms that yield
high rewards for all the objectives, however, the improve-
ment of the rewards in the low-priority objectives is satisfied
only if the objectives that have higher priority do not sac-
rifice (Hüyük and Tekin 2021). Real-world applications in-
clude learning optimal routing for wireless sensor networks
(Shah-Mansouri, Mohsenian-Rad, and Wong 2008), deliver-
ing doses of radiation to target volumes or to normal tissues
in intensity modulated radiation treatment (IMRT) (Jee, Mc-
Shan, and Fraass 2007), etc.

In this work, we focus on a more general order, mixed
Pareto-lexicographic order, which hierarchizes the Pareto
dominance to consider Pareto order and lexicographical or-
der simultaneously. To the best of our knowledge, this is the
first work to analyze multi-objective stochastic linear bandit
(MOSLB) problems under the mixed Pareto-lexicographic
order. Note that by setting the precedence among objectives,
the mixed order can specialize in the Pareto order or lexico-
graphical order. The contributions of this work are summa-
rized as follows.
• We formulated the MOSLB framework under two kinds

of mixed Pareto-lexicographic orders, specifically mixed
Pareto-lexicographic order under priority chains (MPL-
PC) and mixed Pareto-lexicographic order under priority
levels (MPL-PL).

• Aimed at the two MOSLB problems, we defined the op-
timality justification and the regret evaluation based on
gross-scalars which properly denotes the infinite and in-
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finitesimal quantities, respectively.
• Finally, we developed two MOSLB algorithms under

the two mixed Pareto-lexicographic orders, respectively.
Theoretical analysis of the regret shows that the algo-
rithms are Hannan consistent, and the effectiveness of the
algorithms is verified through numerical experiments.

Remainder of the paper is organized as follows. We re-
view the related work in Section 2. The bandit framework
under the novel mixed orders is introduced in Section 3, fol-
lowed by the proposed learning algorithms in Section 4. Sec-
tion 5 demonstrates the study of numerical experiments. The
conclusion and future work are summarized in the last part.

Related Work
In this section, we give a discussion on related work with
stochastic bandits, multi-objective bandits, and the Grossone
methodology.

Stochastic Bandits
In 1985, Lai, Robbins et al. (1985) developed a stochastic
MAB algorithm which is upper bounded by O(K log T ) and
provided a matching lower bound. Auer (2002) proposed
the SupLinRel algorithm with respect to linear model which
yielded regret bound of Õ(

√
dT ), where a sophisticated de-

vice is developed to decouple reward dependence. The con-
fidence region approach was then proposed in (Dani, Hayes,
and Kakade 2008) to derive the upper confidence bound of
the expected reward, with which the algorithm results in
the regret bound of Õ(d

√
T ). Later, Abbasi-Yadkori, Pál,

and Szepesvári (2011) improved the regret bound by a log-
arithmic factor. The upper confidence bound (UCB) based
technique has been thoroughly explored in stochastic ban-
dit paradigm over decades (Auer 2002; Abbasi-Yadkori, Pál,
and Szepesvári 2011; Bubeck et al. 2015; Zhang et al. 2016;
Xue et al. 2020; Hu et al. 2021; Alieva, Cutkosky, and Das
2021; He et al. 2022; Li, Barik, and Honorio 2022; Ma-
soudian, Zimmert, and Seldin 2022; Jin et al. 2022).

Another piece of the research assumes the relation be-
tween the contextual information and the reward can be
modeled as a Lipschitz function (Kleinberg, Slivkins, and
Upfal 2008; Lu et al. 2019b). Lu, Pál, and Pál (2010) pre-
sented a Query-Ad-Clustering algorithm with its regret up-
per bounded by Õ

(
T 1−1/(2+dc)

)
and lower bounded by

Ω
(
T 1−1/(2+dp)

)
. Slivkins (2011) developed a method, con-

textual zooming, which achieves near-optimal regret bounds
Õ
(
T 1−1/(2+dz)

)
for the problems with exponentially or in-

finitely large strategy sets. Recently, Feng, Huang, and Wang
(2022) developed a novel algorithm called Batched Lips-
chitz Narrowing (BLiN) which can optimally solve the prob-
lem of Lipschitz bandit problems with regret rate Õ(T

dz+1
dz+2 )

using O(log log T ) batches.

Multi-objective Bandits
To tackle the problems with multi-dimensional rewards,
Drugan and Nowe (2013) first introduced the MOMAB with
Pareto order and developed the algorithms which took the

upper bound O(K log T ) of the Pareto regret. An algo-
rithm for multi-objective contextual bandit problems where
one objective dominates the other was proposed in (Tekin
and Turgay 2018) and achieves Õ(T (2α+d)/(3α+d)) on both
their developed 2D regret and Pareto regret. Turgay, Oner,
and Tekin (2018) then studied the bandit model with con-
textual information, where the expected reward satisfied
the Lipschitz condition. Later, Lu et al. (2019a) improved
MOMAB to tackle non-linear rewards by cooperating with
generalized linear bandit model and obtained a Pareto re-
gret bound Õ(d

√
T ). Hüyük and Tekin (2021) first analyzed

the MOMAB under lexicographic ordering and developed
a priority-based regret to assess the bandit algorithm under
this environment. Their developed algorithm obtained a sub-
optimal upper bound Õ

(
K

2
3T

2
3

)
for the priority-based re-

gret. Recently, Xu and Klabjan (2023) presented new algo-
rithms and analyses for adversarial MOMAB, providing in-
sights into the formulation of Pareto regrets and their appli-
cations. Besides, researchers also focused on the identifica-
tion of Pareto optimal arms within limited budget (Van Mof-
faert et al. 2014; Auer et al. 2016; Kone, Kaufmann, and
Richert 2023; Kim, Iyengar, and Zeevi 2023).

Grossone Methodology
Grossone methodology (GM) introduced a novel numeral
system proposed and developed by Sergeyev (2017) to
represent finite, infinite, and infinitesimal numbers with
Grossone base, 1⃝. Due to the fact that the axioms of infi-
nite and infinitesimal quantities complement the axioms of
the real numbers perfectly, four basic operations as well as
the comparison operator are well defined for the Grossone
base. Moreover, the standard properties (commutative, asso-
ciative, existence of inverse, etc.) also work for the numer-
als of GM. The method has already successfully applied to
optimization (Cococcioni, Pappalardo, and Sergeyev 2018;
Lai, Fiaschi, and Cococcioni 2020; Lai et al. 2021), differ-
ential equations (Sergeyev 2013), game theory (Fiaschi and
Cococcioni 2021), and so forth.

Instead of using ∞, a numeral associated with infinite or
infinitesimal quantities can be denoted by the GM as fol-
lows,

c = cpm
1⃝pm+· · ·+cp0

1⃝p0+cp−1
1⃝p−1+· · ·+cp−k

1⃝p−k

where m, k ∈ N. The exponents pi and the digits cpi
are

called gross-powers and gross-digits, respectively. A quan-
tity with gross-powers being zero represents a real number,
while infinite and infinitesimal quantities correspond to pos-
itive and negative gross-powers, respectively. For example,
7.8 1⃝2 + 3 1⃝0 − 2.1 1⃝−1 is a gross-scalar with one infi-
nite element, one finite element, and an infinitesimal element
correspondingly.

Let f1, . . . , fm denote the m objectives, the lexicograph-
ically optimization problems can be reformulated by using
gross-scalar as,

min f1(x) + 1⃝−1f2(x) + · · ·+ 1⃝1−mfm(x). (1)

The priority relation is rooted within the gross-powers:
the higher the power, the larger the priority. The most impor-
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tant objective f1(x) is indeed associated with the exponent
0.

Problem Description
In this section, we first review the problem setting of
MOSLB and the learning goals under Pareto order and lex-
icographic order, then we develop the MOSLB framework
under two more generally applicable orders, mixed Pareto-
lexicographic orders.

In a T -round MOSLB problem, the agent observes the
context of K arms Xt = {xt,a ∈ Rd | a ∈ [K]} at round
t ∈ T . Once the learner selects the arm at ∈ [K], it receives
a reward vector y(xt,at) = [yt,1, yt,2, . . . , yt,m] ∈ Rm with
yt,m = ym(xt,at) for brevity. In stochastic linear bandits,
the rewards are supposed to be random variables with ex-
pectations

E [yi(xt,a) | xt,a,Ft−1] = ⟨θ∗
i ,xt,a⟩, ∀i ∈ [m], (2)

where θ∗
i is unknown parameter to be estimated for the

i-th objective, and Ft−1 = {x1,a1
, . . . ,xt−1,at−1

} ∪
{y1,1, y2,1, . . . , yt−1,1} ∪ . . . ∪ {y1,m, y2,m, . . . , yt−1,m}
constitutes a σ-filtration of events up to round t. We assume
that the stochastic rewards are sub-Gaussian.

The goal of the learner is to minimize the accumulated
regret over T rounds, where the regret for each round is gen-
erally measured through the gap between the selected arm
and the optimal arms. However, due to the fact that the ob-
jectives in a multi-objective problems are conflict with each
other, which means that to improve one objective has to sac-
rifice the other one. Pareto order and lexicographic order are
two commonly used metrics to measure the preference be-
tween multiple objectives, and the detail of these two orders
is introduced as follows.

Pareto Order
When the objectives are incomparable, the optimality is
judged based on Pareto dominance defined as follows.
Definition 1 (Pareto dominance). Let u,v ∈ Rm be two
vectors in objective space, u is said to Pareto-dominate v,
denoted as u ≻par v, if and only if ∀i ∈ [m], ui ≥ vi and
∃j ∈ [m], uj > vj .

Given the Pareto dominance, the concept of Pareto sub-
optimality gap (PSG) was introduced in (Drugan and Nowe
2013) to measure expected loss between the chosen arm and
optimal arms.
Definition 2 (PSG). Let x be the context in X , and µ(x) be
the vector of its expected reward. The Pareto suboptimality
gap is defined as the minimal scalar ζ ≥ 0 such that by
adding ζ to all entries of the expected reward the arm can
not be Pareto dominated by any other arms. Formally,

∆(x) = inf {ζ ∈ R+ | (µ(x) + ζ) ⊀par µ(x′), ∀x′ ∈ X} .

In this way, performance of the learner can be evaluated
by Pareto regret, which is given as

PR(T ) =
T∑

t=1

∆(xt,at). (3)

Figure 1: Illustration of MPL-PC, where each dot denotes
one objective and arrows represent precedence relationship.
(In the example, there are preferences among the objectives
f1, f2, and f3, where f1 is indefinitely important than f2
which matters more than f3. The similar relation happens
between f5 and f6. Besides, there is not any priority between
the circles.)

Lexicographic Order
In consideration of the other scenario where the objectives
are ranked lexicographically, lexicographic dominance can
be defined as
Definition 3 (Lexicographic dominance). Let u,v ∈ Rm be
two vectors in objective space, u is said to lexicographically
dominate v in the first i objectives, denoted as u ≻lex,i v, if
and only if uj > vj , where j = min{k ≤ i : uk ̸= vk}.

Given lexicographic dominance, an arm a∗t is said to be
lexicographically optimal if and only if there is no arm in
the decision set that can lexicographically dominate it in all
the m objectives. Hüyük and Tekin (2021) developed the
priority based regret for MOSLB under lexicographic order
as

LRi(T ) =

T∑
t=1

(
µi(xt,a∗

t
)− µi(xt,at)

)
I(At,i), (4)

where At,i =
{
µj(xt,a∗

t
) = µj(xt,at

), 1 ≤ j ≤ i− 1
}

and
I(·) is the indicator function.

Mixed Pareto-lexicographic Orders
In this subsection, We introduce two realistic and general
orders for multi-objective bandit problems and develop the
optimality gap and algorithm regret for MOSLB.

MPL-PC Based on users’ preference, there may exist lex-
icographical relationship among part of the objectives, for
example in Fig 1. In this setting, we can partition the ob-
jective space Y to c subspace Y1 × Y2 × · · · × Yc, where
the objectives in Yi ⊂ Rmi are ranked lexicographically
and

∑c
i=1 mi = m. We have no priority between differ-

ent subspace Yi, which means the objectives from differ-
ent subspace have to treat equivalently. Followed (Lai, Fi-
aschi, and Cococcioni 2020), the order under this scenario
is called mixed Pareto-lexicographic order under priority
chains, MPL-PC.

Based on the GM, we can denote the rewards at
an arm a by a vector of gross-scalar y(xt,a) =
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[y(1)(xt,a), y(2)(xt,a), . . . , y(c)(xt,a)]
⊤ with y(i)(xt,a) =

y(i),1(xt,a)+ y(i),2(xt,a) 1⃝−1+ · · ·+ y(i),mi
(xt,a) 1⃝1−mi ,

where y(i),1 is the most important objective in Yi, followed
by y(i),2, etc. Inspired by this representation, we can define
the optimality condition under this order as follows.
Definition 4 (MPL-PC optimality). A vector with gross-
scalar entries u = [u(1), u(2), . . . , u(c)] is said to MPL-PC
optimal if there is no other v such that v(j) ≥ u(j), ∀j ∈ [c]
and u ̸= v.

To gauge the performance of bandit algorithms, we need
to define a regret quantity which measures the gap in metrics
between at and a∗t . Due to the properties of GM representa-
tion, the gap between the chosen arm and the optimal arms
can be defined by changing the real number to gross-scalar
as follows.
Definition 5 (MPL-PC suboptimality gap). Let x be the arm
pulled by the learner. The suboptimality gap w.r.t. MPL-PC
is defined as the minimum gross-scalar with non-negative
digits c = c0 + c1 1⃝−1 + c2 1⃝−2 + · · · , ci ≥ 0 that by
adding to the scalar to each chain of the expected reward
the arm becomes Pareto-lexicographic optimal.

∆̃(x) = inf {c | µ(xt,at) + c ⊀par µ(x′), ∀x′ ∈ X} .
This definition is similar to that under Pareto order except

that the gap is measured by a gross-scalar, which inherits the
lexicographic relationship in it. In this way, we can evaluate
the learner’s performance under MPL-PC by

PCR(T ) =
T∑

t=1

∆̃(xt,at
). (5)

MPL-PL We also consider another scenario where a
group of the objectives is infinitely more important than
the second group which in turn is comparably more impor-
tant than the third one, etc. The objectives among the same
group are incommensurable, for example in Fig. 2. This or-
der was termed as mixed Pareto-lexicographic under pri-
ority levels, MPL-PL. Interested readers can refer to (Lai
et al. 2021) for real-world applications under this scenario.
Supposed that we have l groups of objectives whose pref-
erences are ordered lexicographically. By partitioning the
objective space Y to Y1 × Y2 × . . .Yl where Yi ⊂ Rmi

and
∑l

i=1 mi = m, we denote the rewards as y(xt,a) =
[y1(xt,a)

⊤, . . . ,yl(xt,a)
⊤]⊤. Then the optimality under this

order can be formulated as follows.
Definition 6 (MPL-PL optimality). A vector u =
[u⊤

1 ,u
⊤
2 , . . . ,u

⊤
l ]

⊤ ∈ Y is said to be optimal in the
first k priority level if there is no v ∈ Y such that
vj ≻par uj , ∀j ∈ [k].

We leverage the gross-scalar with gross-digits being
Pareto suboptimality gap for each priority levels to evalu-
ate the performance of the chosen arms. Let ∆i(xt,at

) be
the PSG at round t for the i-th priority level, then the regret
for a bandit algorithm can be formulated as

PLR(T ) =
T∑

t=1

l∑
i=1

1⃝i−1∆i(xt,at
) · I(Ãt,i), (6)

Figure 2: Illustration of MPL-PL. (The first two objectives
f1 and f2 are preferred than the next three objectives, more-
over, the objectives in the circle are incomparable.)

where Ãt,i = {∆j(xt,at
) = 0, 1 ≤ j ≤ i− 1}.

Remark 1 Noted that these two orders are a more general
order compared to order that only involves Pareto or lexi-
cographical dominance, specifically, the order may special-
ize in Pareto dominance with no chain exist in MPL-PC and
lexicographic order with each group in MPL-PL contains an
exclusive objective.

The Learning Algorithms
In this part, we develop the stochastic bandit algorithms
with MPL-PC and MPL-PL, respectively. Without loss of
generality, we assume that ∥xt,a∥ ≤ 1 for a ∈ [K] and
∥θ∗

i ∥ ≤ 1, i ∈ [m]. Throughout the paper, ∥x∥ is the l-2
norm of vector x ∈ Rd, and the induced norm of x by a
positive definite matrix V ∈ Rd×d is ∥x∥V =

√
x⊤V x.

MOSLB-PC
We first propose a MOSLB algorithm for problems with the
MPL-PC order, MOSLB-PC, which is outlined in Algorithm
1. The algorithm starts with pure exploration stage followed
by focused exploitation process. At initial rounds, the un-
certainty of the estimated reward may severely influence the
decision process, therefore, we consider to lower the width
of confidence interval of each arm down to the threshold ϵ.
Then in exploitation process, the algorithm focuses on deter-
mining the optimal arms for each priority chain separately.

Let Xt = [x1,a1
, . . . ,xt−1,at−1

]⊤ ∈ R(t−1)×d

be the matrix of past decisions, and Yt,i =

[yi(x1,a1
), . . . , yi(xt−1,at−1

)]⊤ ∈ R(t−1)×1 be histor-
ical rewards of the i-th objective. At each round, the
algorithm needs to estimate the parameter θ∗

i for i-th
objective by l2-regularized least squares estimate with
regularization parameter λ = 1 as,

θ̂t,i = (X⊤
t Xt + I)−1X⊤

t Yt,i. (7)

According to the theorem of self-normalized bound
(Abbasi-Yadkori, Pál, and Szepesvári 2011) for martingales,
the parameter θ∗

i lies in the an ellipsoid centered at θ̂t,i with
probability at least 1− δ, therefore, a confidence set Ct,i can
be constructed as,

Ct,i =
{
θ ∈ Rd : ∥θ − θ̂t,i∥Vt

≤ γt

}
, (8)
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Algorithm 1: MOSLB-PC

Input: Time horizon T , and confidence level δ ∈ (0, 1)

1: Initialize V1 = Id, θ̂1,i = 0, i ∈ [m]
2: for t = 1, 2, . . . , T do
3: Observe each arm’s context xt,a, a ∈ [K]
4: Evaluate ŷt,i(xt,a), wt(xt,a) for i ∈ [m], a ∈ [K]
5: if wt(xt,a) > ϵ for some a ∈ [K] then
6: Play the arm at selected randomly from those arms

and observe the reward
7: else
8: Compute ut(xt,a), lt(xt,a) based on Eq. 10
9: for j = 1, 2, . . . , c do

10: Obtain suboptimal arm set A∗
t,(j) for each chain

based on the PFLF algorithm
11: end for
12: Compute optimal arm set A∗

t =
⋃

i∈[c] A∗
t,(i)

13: Play an arm at from A∗
t uniformly at random and

observe the reward
14: end if
15: Update Vt+1 = Vt + xt,atx

⊤
t,at

, Xt+1, and Yt+1,i

16: Update the estimators θ̂t+1,i = V −1
t+1X

⊤
t+1Yt+1,i

17: end for

Algorithm 2: Prior Free Lexicographical filter (PFLF)
Input: Objective space Yc ⊂ Rmc , upper and lower confi-
dence bounds for each arm a ∈ [K]
Output: A∗

(c) = A∗
(c),mc

1: Initialize A∗
(c),0 = [K]

2: for i = 1, 2, . . . ,mc do
3: Evaluate â∗i = argmaxa∈A∗

(c),i−1
ut,i(xt,a)

4: Filter the arms A∗
(c),i = {a ∈ A∗

(c),i−1 : aCiâ
∗
i }

5: end for

where, γt = R

√
d log

(
m(1+t)

δ

)
+ 1 and Vt = Vt−1 +

xt,at
x⊤
t,at

, V0 = λId.
Based on the the principle of “optimism in face of uncer-

tainty”, we can evaluate the upper confidence bound of the
expected reward for any arm a by

ut,i(x) = max
θ∈Ct,i

θ⊤x, i ∈ [m]. (9)

Moreover, by algebraic manipulation, the optimization
can be solved with the closed form:

ut,i(x) = ŷt,i(x) + wt(x), i ∈ [m] (10)

where ŷt,i(x) = ⟨θ̂t,i,x⟩ is the estimated expected reward,
wt(x) = γt∥x∥V −1

t
denotes the width of confidence level.

Similarly, the lower confidence bound can be calculated as
lt,i(x) = ŷt,i(x)−wt(x). The upper confidence bounds can
be written as the form ut(x) = [ut,(1)(x), . . . , ut,(c)(x)]

⊤

based on the predefined representation.
A prior free filter algorithm, as shown in Algorithm 2 is

adapted to deal with the lexicographically ranked objectives

in exploitation stage. In the algorithm, the arm with the high-
est upper confidence bound for the first objective in the chain
is determined as the best arm. Considered the uncertainty,
the two arms a and a′ are said to be linked in objective i
if [lt,i(xt,a), ut,i(xt,a)] ∩ [lt,i(xt,a′), ut,i(xt,a′)] ̸= ∅. Then
those arms which are in the same component of the transi-
tive closure of the linked relation in objective i with the best
arm â∗i , written as aCiâ

∗
i , are selected as the sub-optimal

arms. After the PFLF algorithm assesses the suboptimal arm
set for each priority chain, the overall suboptimal arms are
formed as the union of the suboptimal set for each chain
due to incomparable relationship among different chains.
Finally, the algorithm selects an arm uniformly at random
from the optimal arm set A∗

t and updates the parameters
based on the reward received from the environment. The fol-
lowing theorem establishes the theoretical guarantees for the
MOSLB-PC algorithm.

Theorem 1 Assume the arm set is finite, i.e., K < ∞, ∀t ∈
[T ], and the maximum length of the priority chains is
|c|max = maxi∈[c] mi. If the MOSLB-PC algorithm runs
with δ ∈ (0, 1) and ϵ > 0, then with probability at least
1− δ,

PCR(T ) ≤
|c|max∑
i=1

1⃝i−1 (100ϵ−2dγ2
T log T + 2TKϵ

)
where, γT = R

√
d log(m(1 + T )/δ) + 1.

Remark: Theorem 1 implies that the algorithm involves the
upper-bounded regret of Õ

(
(dKT )2/3

)
without any prior

knowledge by setting the parameter ϵ = d2/3(KT )−1/3.
The element of the regret matches that of the existing al-
gorithm for bandit under lexicographic order (Hüyük and
Tekin 2021). Notably, the regret correlates with the number
of objectives in the longest priority chain.

MOSLB-PL
Now we focus on bandit problems with MPL-PL, and the de-
veloped algorithm, MOSLB-PL, is presented in Algorithm
3. The process similarly involves the exploration and ex-
ploitation stages. In the exploitation stage, we obtain the
optimal arms level by level by considering the upper con-
fidence bound of each arm. Followed (Lu et al. 2019a), the
empirical Pareto optimality is adapted to determine the op-
timal arms at each priority level, where those arms that their
upper confidence bound cannot be Pareto dominated by that
of the other are recognized. Naturally, the optimal arms for
the last level form the final optimal arm set at this round,
and we select an arm from it randomly. The performance of
MOSLB-PL can be guaranteed through the following theo-
rem, and the detailed proofs can be found in the Appendix.

Theorem 2 Assume the arm set is finite. If the MOSLB-PL
algorithm runs with δ ∈ (0, 1) and ϵ > 0, then with proba-
bility at least 1− δ,

PLR(T ) ≤
l∑

i=1

1⃝i−1 (100ϵ−2dγ2
T log T + 2Tϵ

)
.
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Figure 3: Pareto chain regret of the compared methods for MPL-PC with two chains: c0 + c1 1⃝−1 + c2 1⃝−2.

Remark: Theorems 2 shows that expected loss of MOSLB-
PL is upper bounded by Õ

(
(dT )2/3

)
with the parameter ϵ =

d2/3(T )−1/3. Besides, the length of the gross-scalar for the
regret is determined by the number of priority levels.

Experiments
In this section, we conducted numerical experiments to ver-
ify the performance of our proposed bandit algorithms. The
method developed (Drugan and Nowe 2013; Lu et al. 2019a)
was adopted as the baseline, denoted as P-UCB in our set-
ting. P-UCB considers the objectives in Pareto order and
compares the arms based on the upper confidence bound of
the estimated rewards.

MPL-PC
We first consider the MPL-PC scenario, and the comparative
methods are listed as follows.

• P-UCB1: This method discards the lexicographic rela-
tionship within priority chains and treats all the objec-
tives equivalently in Pareto dominance.

• P-UCB2: This method only considers the first objectives
in each priority chain, optimizing c objectives in Pareto
order.

We first experimented in the environment with m =
5 objectives and the priority chains represented by
{(1, 2), (3, 4, 5)}, which means that the first chain contains
two objectives in lexicographic order while the second chain
has three objectives. Three settings, the context’s dimension
d are picked from {5, 10, 15}, were investigated, and the un-
known coefficients θ∗

i are sampled uniformly from the unit
ball. We generated 5d arms uniformly from the centered unit
ball.

Since the algorithms involve randomness, we carried out
10 trials with round T = 3000 and reported the outcomes in
Fig. 3, where the lines represent average performance among
ten trials and the shadow area shows the variance. The re-
gret is denoted as gross-scalar c0 + c1 1⃝−1 + c2 1⃝−2 which
is impractical to draw this scalar in Cartesian coordinates.
Therefore, we plotted the iterative process of its gross-digits,
where c0 presents the regret of the most important objective

Algorithm 3: MOSLB-PL

Input: Time horizon T , and confidence level δ ∈ (0, 1)

1: Initialize V1 = Id, θ̂1,i = 0, i ∈ [m]
2: for t = 1, 2, . . . , T do
3: Observe each arm’s context xt,a, a ∈ [K]
4: Evaluate ŷt,i(xt,a), wt(xt,a) for i ∈ [m], a ∈ [K]
5: if wt(xt,a) > ϵ for some a ∈ [K] then
6: Play the arm at selected randomly from those arms

and observe the reward
7: else
8: Compute the upper confidence bound ut(xt,a)
9: Initialize A∗

t,0 = [K]
10: for j = 1, 2, . . . , l do
11: Obtain suboptimal set A∗

t,j = {a ∈ A∗
t,j−1 |

ut,j(xt,a′) ⊁par ut,j(xt,a), ∀a′ ∈ A∗
t,j−1}

12: end for
13: Play an arm at from A∗

t,l uniformly at random and
observe the reward

14: end if
15: Update Vt+1 = Vt + xt,at

x⊤
t,at

, Xt+1, and Yt+1,i

16: Update the estimators θ̂t+1,i = V −1
t+1X

⊤
t+1Yt+1,i

17: end for

in each priority chain followed by c1 and c2. Implementation
code can be accessed via our webpage1.

It can be seen from the results that P-UCB2 performs well
for the regret of the first priority as it only considers the most
important objective. P-UCB1 performs the worst and attains
almost linear regret which means that treating all objectives
in Pareto order do not work. On the contrary, the proposed
MOSLB-PC converges efficiently after the stage of explo-
ration on all the three hierarchies, which demonstrates that
the proposed method can well address the decision-making
problems with MPL-PC order.

MPL-PL
To verify the effectiveness of the MOSLB-PL algorithm, we
compared it with the same baseline methods of the last ex-

1https://github.com/jicheng9617/moslb
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Figure 4: Pareto level regret of the compared methods for MPL-PL with two levels: ∆1(xt,at
) + ∆2(xt,at

) 1⃝−1.

Figure 5: Pareto level regret of the compared methods for MPL-PL: ∆1(xt,at) + ∆2(xt,at) 1⃝−1 +∆3(xt,at) 1⃝−2.

periment except that the P-UCB2 method only considers the
objectives in the first priority level.

In this experiment, environments are set the same as that
in previous one, and we first consider the priority level rep-
resented by {(1, 2, 3), (4, 5)} with m = 5 objectives. The
notation means that the five objectives are segmented into
two groups, where the first one consists of three objectives
and is infinitely important than the second group which con-
tains the last two objectives. The results are shown in Fig. 4,
where we can see that the proposed algorithm outperforms
the baselines w.r.t. the mean and the variance of the regret.
It should be noted that the Pareto level regret involves the
indicator function, therefore, the regret in the second level
accumulates only when the algorithm chooses the arms that
have no regret in the first level.

Furthermore, to test the performance of the MOSLB-
PL algorithm when facing more priority levels, we per-
formed the experiment with MPL-PL problems represented
by {(1, 2, 3), (4, 5, 6), (7, 8, 9, 10)}. The results are shown
in the Fig. 5. It can be observed that the proposed algo-
rithm can efficiently choose the optimal arms for multi-
objective problems under MPL-PL. On the contrary, the P-
UCB1 method, which treats all objectives jointly, fails in the
experiment, and P-UCB2 performs well in the first level but
accumulates regret at second and third levels.

Conclusions
In this paper, we studied and developed the MOSLB frame-
work under two realistic orders with users’ preferences,
MPL-PC and MPL-PL. Based on the principle of optimism
in face of uncertainty and the balance of exploration and
exploitation, we developed two UCB-type MOSLB algo-
rithms for the two mixed orders, respectively. To measure
the performance of the algorithms, we adopted the Grossone
methodology to represent Pareo-lexicographic optimality,
through which the precedence relationship can be inherited
in the representation of the scalar. The element of the regret
denoted by gross-scalar of the proposed algorithms is up-
per bounded by Õ

(
(dT )2/3

)
, which is in line with that for

MOSLB under pure lexicographic order. The performance
is analyzed theoretically and verified through numerical ex-
periments compared with the baseline methods.

In future, we will further investigate the applications of
the proposed algorithms in real-world multi-objective se-
quential decision-making problems. Besides, the optimal
arm identification approach may be meaningful but scarce
for the applications of the mixed Pareto-lexicographic or-
ders.
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