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Abstract

This paper studies lexicographic online learning within
the framework of multiobjective stochastic linear bandits
(MOSLB), where the agent aims to simultaneously maximize
m objectives in a hierarchical manner. Previous literature has
investigated lexicographic online learning in multiobjective
multi-armed bandits, a special case of MOSLB. They pro-
vided a suboptimal algorithm whose regret bound is Õ(T

2
3 )

based on a priority-based regret metric. In this paper, we pro-
pose an algorithm for lexicographic online learning in the
MOSLB model, achieving an almost optimal regret bound of
Õ(d
√
T ) when evaluated by the general regret metric. Here,

d is the dimension of arm vectors and T is the time hori-
zon. Our method introduces a new arm filter and a multiple
trade-offs approach to effectively balance the exploration and
exploitation across different objectives. Experiments confirm
the merits of our algorithms and provide compelling evidence
to support our analysis.

Introduction
Sequential decision-making under uncertainty arises in nu-
merous real-world applications, including medical trials
(Robbins 1952), recommendation systems (Bubeck and
Cesa-Bianchi 2012), and autonomous driving (Huang et al.
2019). This has motivated the development of the stochastic
multi-armed bandits (MAB). In MAB, an agent repeatedly
selects an arm from K arms and receives a single-valued
reward sampled from a fixed but unknown distribution spe-
cific to the selected arm (Agrawal 1995; Auer 2002; Audib-
ert, Munos, and Szepesvári 2009; Yu et al. 2018; Huang,
Dai, and Huang 2022). The goal of the agent is to mini-
mize the regret, which is the cumulative difference between
the expected reward of the selected arm and that of the best
arm. However, the aforementioned scenarios can be better
modeled if multiple objectives are considered. For exam-
ple, an online advertising system needs to maximize both
the click-through rate and the click-conversion rate (Ro-
driguez, Posse, and Zhang 2012). Therefore, multiobjective
multi-armed bandits (MOMAB) model is proposed, which
replaces the single-valued reward in MAB with a reward
vector (Drugan and Nowe 2013).

∗Qingfu Zhang is the corresponding author.
Copyright c© 2025, Association for the Advancement of Artificial
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MOMAB is a decision-making system that operates over
T rounds (Drugan and Nowe 2013). In the t-th round, the
agent chooses an arm at from the arm set [K]1, and then
receives a reward vector [y1t , y

2
t , . . . , y

m
t ] ∈ Rm. Here, m

is the number of objectives, and yit represents the reward of
the i-th objective, i ∈ [m]. This reward is a random variable
with expectation E[yit] = µi(at). Most existing work evalu-
ates the performance of the agent by Pareto regret (Van Mof-
faert et al. 2014; Turgay, Oner, and Tekin 2018; Lu et al.
2019; Cai et al. 2023; Xu and Klabjan 2023), which regards
all objectives as equivalent. Therefore, minimizing the re-
gret of any objective ensures an optimal Pareto regret bound.
Specifically, Theorem 4.1 of Xu and Klabjan (2023) states
that the Pareto regret is smaller than the regret of any objec-
tive i ∈ [m]. Therefore, a nearly optimal Pareto regret bound
can be achieved by applying the UCB strategy (Auer 2002)
to any of the m objectives. However, the remaining m − 1
objectives may still suffer the linear regret bounds O(T ).

To deal with this inherent drawback, lexicographic order
is adopted (Ehrgott 2005), where the priority over m objec-
tives is given by their indices, such that for i, j ∈ [m], the
i-th objective is more important than the j-th objective if and
only if i < j. When it comes to bandit model, different arms
are compared by the lexicographic order on their expected
rewards (Hüyük and Tekin 2021). Precisely, given two arms
a and a′ with expected rewards [µ1(a), µ2(a), . . . , µm(a)]
and [µ1(a′), µ2(a′), . . . , µm(a′)], arm a is said to lexico-
graphically dominate arm a′ if and only if µ1(a) > µ1(a′)
or ∃ i∗ ∈ {2, . . . ,m}, µi(a) = µi(a′) for 1 ≤ i ≤ i∗ − 1
and µi

∗
(a) > µi

∗
(a′). An arm a∗ is lexicographic optimal

if and only if no other arms lexicographically dominate it.
In a recent study, Hüyük and Tekin (2021) investigated the

MOMAB problem under lexicographic ordering and pro-
posed a priority-based regret as follows

R̂i(T ) =
T∑
t=1

(
µi(a∗)− µi(at)

)
I
(
Ai(at)

)
, i ∈ [m]. (1)

Here, a∗ is the lexicographic optimal arm in [K], I(·) is the
indicator function, and Ai(at) is the event that at has the
same expected rewards as the optimal arm for the previous
i − 1 objectives, i.e., Ai(at) = {µj(a∗) = µj(at), 1 ≤

1We use [N ] to denote the set {1, 2, . . . , N}.
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j ≤ i−1}. Hüyük and Tekin (2021) developed an algorithm
enjoying a priority-based regret bound of Õ((KT )

2
3 ).

However, there are three limitations in the work of Hüyük
and Tekin (2021). First, the regret bound Õ((KT )

2
3 ) is sub-

optimal when applied to the single objective bandit prob-
lem since the existing regret bound for single objective
MAB is Õ(

√
KT ) (Bubeck and Cesa-Bianchi 2012). Sec-

ond, the metric R̂i(T ) is meaningless for infinite-armed ban-
dits. Specifically, if the number of arms is infinite, apply-
ing OFUL2 to the first objective of a multiobjective ban-
dit problem can find a sequence of arms {at}t∈[T ] that ap-
proaches the optimal value of the first objective with a rate of
Õ(t−

1
2 ), but none of {at}t∈[T ] is optimal for the first objec-

tive. Therefore, I(µ1(a∗) = µ1(at)) is false for any t ∈ [T ],
resulting in the priority-based regret R̂i(T ) = 0 for i ≥ 2.
This is obviously unreasonable because a zero regret indi-
cates OFUL selects the optimal arms for i ≥ 2 across T
rounds, yet OFUL does not optimize the objective i ≥ 2.
Third, MOMAB neglects the contextual information in real-
world applications, such as user preferences and news fea-
tures in news recommendation systems, which could be used
to guide the decision-making process (Li et al. 2010).

To remove these limitations, we focus on stochastic lin-
ear bandits (SLB), which encodes arms as vectors to incor-
porate contextual information. Although SLB has been ex-
tensively studied in the single objective field (Auer 2002;
Dani, Hayes, and Kakade 2008; Abbasi-yadkori, Pál, and
Szepesvári 2011; Xue et al. 2020; Alieva, Cutkosky, and
Das 2021; Zhu and Mineiro 2022; He et al. 2022; Yang
et al. 2022), limited research is conducted on the multi-
objective setting. In multiobjective stochastic linear bandits
(MOSLB), an agent selects an arm xt from a given arm set
Dt ⊂ Rd in the t-th round and then receives a stochastic re-
ward vector [y1t , y

2
t , . . . , y

m
t ] ∈ Rm. The expected reward of

each element is linear with the arm vector, i.e.,

E[yit|xt,Ft−1] = 〈θi∗,xt〉, i ∈ [m]. (2)

Here, θi∗ is the inherent vector for the i-th objective, and
Ft−1 is a σ-filtration of events up to round t, consist-
ing of {x1,x2, . . . ,xt−1} ∪ {y11 , y12 , . . . , y1t−1} ∪ . . . ∪
{ym1 , ym2 , . . . , ymt−1}. The stochastic rewards are R-sub-
Gaussian for some R > 0. In other words, for any β ∈ R,

E[eβy
i
t |xt,Ft−1] ≤ exp

(
β2R2

2

)
, i ∈ [m]. (3)

We extend the regret of single objective bandits (Lattimore
and Szepesvári 2020) to the multiobjective setting, i.e.,

Ri(T ) =
T∑
t=1

〈θi∗,x∗t − xt〉, i ∈ [m] (4)

where x∗t is the lexicographic optimal arm in Dt. The
existing single objective SLB algorithms exhibit a regret

2OFUL is a single objective stochastic linear bandit algorithm
that achieves a regret bound of Õ(

√
T ) (Abbasi-yadkori, Pál, and

Szepesvári 2011).

bound of Õ(d
√
T ) (Dani, Hayes, and Kakade 2008; Abbasi-

yadkori, Pál, and Szepesvári 2011). Thus, a compelling chal-
lenge for lexicographic MOSLB is to achieve the regret
bound of Õ(d

√
T ) for all m objectives.

To the best of our knowledge, this paper is the first at-
tempt to investigate MOSLB under lexicographic ordering.
We extend the metric of lexicographic bandit algorithm from
the priority-based regret (1) to the more accurate general re-
gret (4). Subsequently, we develop an algorithm that attains
a general regret bound of Õ(d

√
T ) for allm objectives. This

bound is almost optimal in terms of d and T , as the lower
bound for the single objective SLB problem is Ω(d

√
T )

(Dani, Hayes, and Kakade 2008). Our algorithm improves
upon the study of Hüyük and Tekin (2021), which focused
on MOMAB and attained a regret bound of Õ((KT )

2
3 ). The

main innovations of our algorithm include a new arm fil-
ter and a multiple trade-offs approach that balance the ex-
ploration and exploitation across different objectives. These
techniques can be easily adapted to other bandit models,
such as finite-armed SLB (Chu et al. 2011), generalized lin-
ear bandits (Jun et al. 2017; Xue et al. 2023) and unimodal
bandits (Yu and Mannor 2011; Combes and Proutiere 2014).

Related Work
This section provides a literature review on stochastic ban-
dits and multiobjective bandits. For a vector x ∈ Rd, its
`2-norm is denoted as ‖x‖, and its induced norm is ‖x‖V =√
x>V x, where V ∈ Rd×d is a positive definite matrix.

Stochastic Bandits
The seminal work of Lai and Robbins (1985) not only intro-
duced a stochastic MAB algorithm with a regret bound of
O(K log T ) but also established a matching lower bound.
Auer (2002) extended the bandit algorithm to the linear
model with finite arms and developed the SupLinRel algo-
rithm, which employs a sophisticated device to decouple re-
ward dependence, yielding a regret bound of Õ(

√
dT ). In

the context of infinite-armed stochastic linear bandits, Dani,
Hayes, and Kakade (2008) first applied the confidence re-
gion technique to deduce an upper confidence bound for the
expected rewards, resulting in a regret bound of Õ(d

√
T ).

Meanwhile, Dani, Hayes, and Kakade (2008) provided a
matching lower bound Ω(d

√
T ). Later, Abbasi-yadkori, Pál,

and Szepesvári (2011) offered a new analysis for the algo-
rithm of Dani, Hayes, and Kakade (2008) and enhanced the
regret bound by a logarithmic factor. The most commonly-
used strategy for balancing exploration and exploitation in
bandit problem is Upper Confidence Bound (UCB) (Auer,
Cesa-Bianchi, and Fischer 2002; Abbasi-yadkori, Pál, and
Szepesvári 2011; Bubeck et al. 2015; Zhang et al. 2016; Hu
et al. 2021; Li, Barik, and Honorio 2022; Masoudian, Zim-
mert, and Seldin 2022; Feng, Huang, and Wang 2022; Jin
et al. 2022), which first computes the confidence bound of
forthcoming rewards through historical trial data and then
selects the arm with the highest upper confidence bound.

To illustrate the UCB technique, we take the classical
algorithm OFUL as an example (Abbasi-yadkori, Pál, and
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Szepesvári 2011). With the trials up to the t-th round,
OFUL minimizes the square loss of action-reward pairs
{(x1, y1), . . . , (xt−1, yt−1)} to estimate θ∗, such that,

θ̂t = argmin
θ∈Rd

‖Xtθ − Yt‖2 + ‖θ‖2

where Xt = [x>1 ,x
>
2 , . . . ,x

>
t−1] ∈ R(t−1)×d is the his-

torical selected arms matrix, and Yt = [y1, y2, . . . , yt−1] ∈
R(t−1)×1 is historical rewards vector. Based on the estimator
θ̂t, OFUL constructs a confidence region Ct as follows,

Ct = {θ | ‖θ − θ̂t‖Vt ≤ αt}

where αt = O(R
√
d log(t)) and Vt = Id +X>t Xt. Finally,

OFUL selects the most promising arm xt by solving a bilin-
ear optimization problem, i.e.,

(xt, θ̃t) = argmax
x∈Dt,θ∈Ct

〈x, θ〉. (5)

Since the confidence region Ct is an ellipse, Lagrange
method (Boyd and Vandenberghe 2004) shows that the up-
per confidence bound for the arm x ∈ Dt is

ut(x) = 〈θ̂t,x〉+ αt‖x‖V −1
t
,

where 〈θ̂t,x〉 is an unbiased estimation of 〈θ∗,x〉, and
αt‖x‖V −1

t
is a confidence term indicating its uncertainty.

Thus, we can replace Eq. (5) with xt = argmaxx∈Dt
ut(x).

Multiobjective Bandits
MOMAB was initially studied by Drugan and Nowe (2013),
who proposed two UCB-based algorithms that achieve re-
gret bounds of O(K log T ) under the Pareto regret metric
and scalarized regret metric, respectively. The Pareto regret
measures the cumulative distance between the obtained re-
wards and the Pareto optimal rewards, and the scalarized
regret is the weighted sum of the regrets across all objec-
tives (Drugan and Nowe 2013). To leverage side informa-
tion, Turgay, Oner, and Tekin (2018) examined the multiob-
jective contextual bandit model, where the expected reward
satisfies the Lipschitz condition. Lu et al. (2019) developed
an algorithm for the multiobjective generalized linear bandit
model, achieving a Pareto regret bound of Õ(d

√
T ). Another

research direction focuses on designing algorithms from the
perspective of best arm identification, whose primary goal
is to identify the Pareto optimal arms within a limited bud-
get (Van Moffaert et al. 2014; Auer et al. 2016; Azizi, Kve-
ton, and Ghavamzadeh 2022; Kone, Kaufmann, and Richert
2024). Hüyük and Tekin (2021) studied the lexicographic
MOMAB problem and presented an algorithm called PF-
LEX, which has a regret bound of Õ((KT )

2
3 ) under the

priority-based regret metric (1). Cheng et al. (2024) inves-
tigated the mixed lexicographic-Pareto order for MOSLB
problem. Xue et al. (2024) achieved a regret bound of
Õ(T 1−1/(diz+2)) for lexicographic Lipschitz bandits, where
diz is the zooming dimension of objective i ∈ [m]. However,
this regret bound is nearly linear when diz is large.

The intuitive idea to settle the lexicographic bandit prob-
lem is to sequentially filter the arms according to the priority

among objectives (Ehrgott 2005; Hüyük and Tekin 2021).
To further illustrate this, we introduce the PF-LEX algo-
rithm (Hüyük and Tekin 2021). At each round t, PF-LEX
first calculates the estimated reward for each arm a ∈ [K]

and objective i ∈ [M ], which is µ̂it(a) =
∑t−1
τ=1 y

i
τ I(aτ =

a)/Nt(a), where aτ is the arm played at round τ and Nt(a)
denotes the number of times arm a has been played up to
round t. Based on this, PF-LEX constructs the confidence
intervals of the expected rewards as follows[

µ̂it(a)− wt(a), µ̂it(a) + wt(a)
]

where wt(a) = βt

√
1+Nt(a)
N2

t (a)
and βt = O(

√
log(Kmt)).

Subsequently, PF-LEX either chooses an arm with a wide
confidence interval to explore potentially better arms or se-
lects the arm that is most likely optimal in all objectives.
Precisely, taking some ε > 0 as an input for PF-LEX, if
there exists some arm at ∈ [K] such that wt(at) > ε, PF-
LEX chooses this arm at. On the other hand, if wt(a) < ε
for all arms a ∈ [K], PF-LEX filters the promising arms
through the chain relation (Joseph et al. 2016). Starting from
A0
t = [K], PF-LEX operates as follows: for i ∈ [m],

âit = argmax
a∈Ai−1

t

µ̂it(a) + wt(a),Ait = {a ∈ Ai−1t |aCiâit}.

aCiâ
i
t denotes that arm a and âit are chained, i.e., there ex-

ists a sequence of arms {a, b1, . . . , bn, âit} ⊆ [K], the con-
fidence intervals of adjacent arms are intersected on the i-th
objective. Finally, PF-LEX selects the arm âmt .

Algorithms
In this section, we first extend the existing MOMAB algo-
rithm (Hüyük and Tekin 2021) to the MOSLB model as a
warm-up, whose regret bound is suboptimal. Then, we in-
troduce a novel arm filter and a multiple trade-offs approach
to improve the regret bound to an almost optimal level.

Without loss of generality, we assume that the arm vectors
and the inherent vectors are bounded, i.e., for any t ∈ [T ]
and x ∈ Dt, ‖x‖ ≤ 1 and for any i ∈ [m], ‖θi∗‖ ≤ U .

Warm-up: STLO
We introduce an algorithm called Single Trade-off under
Lexicographic Ordering (STLO), which is an extension of
PF-LEX (Hüyük and Tekin 2021), as shown in Algorithm 1.

STLO takes a confidence parameter δ ∈ (0, 1) and an
exploration parameter ε > 0 as input. Before the starting
of round t, STLO has collected the historical data from
the previous t − 1 rounds, such as the historical selected
arms and the corresponding rewards for all m objectives.
These trial data can be used to estimate the unknown vec-
tors {θi∗}i∈[m]. Specifically, in round t, the estimator for the
objective i ∈ [m] is computed as follows:

θ̂it = argmin
θ∈Rd

‖Xtθ − Y it ‖2 + ‖θ‖2 (6)

where Xt = [x>τ ]τ∈[t−1] ∈ R(t−1)×d is the matrix of his-
torically selected arms, and Y it = [yiτ ]τ∈[t−1] ∈ R(t−1)×1 is
the historical rewards of the i-th objective 3.

3θ̂1
1 = θ̂2

1 = · · · = θ̂m
1 = 0, where 0 is the zero vector of Rd.
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Algorithm 1: Single Trade-off under Lexicographic Order-
ing (STLO)

Require: exploration parameter ε, time horizon T
1: for t = 1, 2, . . . , do
2: Compute the estimators θ̂it for all i ∈ [m] by Eq. (6)
3: Compute the estimated rewards and the confidence

term for all arms in Dt by Eq. (7)
4: if wt(xt) > ε for some xt ∈ Dt then
5: Play the arm xt and observe [y1t , y

2
t , . . . , y

m
t ]

6: else
7: Initialize D0

t = Dt
8: for i = 1, 2, . . . ,m do
9: x̂it = argmaxx∈Di−1

t
ŷit(x)

10: Dit =
{
x ∈ Di−1t |x · Ciε · x̂it

}
11: end for
12: Play the arm xt = x̂mt and observe [y1t , . . . , y

m
t ]

13: end if
14: Update Xt+1 = [x>τ ]τ∈[t], Y it+1 = [yiτ ]τ∈[t], i ∈ [m]
15: end for

Using a variant of the self-normalized bound for martin-
gales (Abbasi-yadkori, Pál, and Szepesvári 2011), we obtain
the estimated rewards and the confidence term for any arm
x ∈ Dt as follows:

ŷit(x) = 〈θ̂it,x〉, wt(x) = γt‖x‖V −1
t
, i ∈ [m] (7)

where γt = R
√
d ln(2mt/δ) +U , Vt = Id +X>t Xt and Id

is the d-dimensional identity matrix.
Equipped with the confidence terms {wt(x)}x∈Dt

, STLO
divides the decision-making process into two cases based
on the exploration parameter ε. Precisely, if there exists
some xt ∈ Dt whose confidence term is larger than ε,
i.e., wt(xt) > ε, STLO plays this arm. In this case, STLO
engages in pure exploration without any exploitation. In
contrast, if all arms have reliable estimated rewards, i.e.,
wt(x) ≤ ε, ∀x ∈ Dt, an intuitive method is to play the arm
with the highest upper confidence bound to make a trade-
off between exploration and exploitation. However, the arm
with the highest upper confidence bound may vary for dif-
ferent objectives, preventing the maximization of all objec-
tives by selecting a single arm. Therefore, STLO filters arms
from the first objective to the last objective sequentially as
the objectives are ranked by its importance.

Before introducing the filtering mechanism of STLO, we
provide the ε-chain relation, a simple variant of the chain
relation (Hüyük and Tekin 2021). Since the confidence terms
are smaller than ε in the else case, for any arm x ∈ Dt, its
ε-confidence intervals for the expected rewards of the i-th
objective is constructed as

[`it(x, ε), u
i
t(x, ε)] = [ŷit(x)− ε, ŷit(x) + ε]. (8)

For any arms z1, zn ∈ Dt and objective i ∈ [m], z1 and
zn are ε-chained with each other on the i-th objective if and
only if there exists a sequence of arms {z1, z2, . . . , zn} ⊆
Dt whose ε-confidence intervals of adjacent arms inter-
sect, i.e., [`it(zj , ε), u

i
t(zj , ε)] ∩ [`it(zj+1, ε), u

i
t(zj+1, ε)] 6=

∅, ∀j ∈ [n− 1]. We use z1 ·Ciε · zn to denote z1 and zn are
ε-chained with each other on the i-th objective.

If all arms have reliable estimated rewards, i.e., wt(x) ≤
ε, ∀x ∈ Dt, STLO filters out the promising arms from the
first objective to the last objective. LetD0

t = Dt. For the i-th
objective, STLO first selects the arm with the highest esti-
mated reward, such that x̂it = argmaxx∈Di−1

t
ŷit(x). Then,

it filters arms who are ε-chained with the arm x̂it, i.e.,

Dit =
{
x ∈ Di−1t |x · Ciε · x̂it

}
. (9)

After repeating these two steps on all m objectives, STLO
plays the arm x̂mt and observes the reward [y1t , y

2
t , . . . , y

m
t ].

Finally, STLO updates the contextual information matrix
Xt+1 and the historical rewards vector Y it+1 of each objec-
tive i ∈ [m] to prepare for the decision of the next round.

STLO is evaluated by the priority-based regret (1). We
first covert it into linear bandit version, i.e.,

R̂i(T ) =
T∑
t=1

〈θi∗,x∗t − xt〉I
(
Ai(xt)

)
where Ai(xt) is the event that xt has the same expected
rewards as the optimal arm for the previous i− 1 objectives,
i.e., Ai(xt) = {〈θj∗,x∗t 〉 = 〈θj∗,xt〉, 1 ≤ j ≤ i − 1}. Base
on this, we can give the upper regret bound for STLO.

Theorem 1 Suppose that (2) and (3) hold, and the arm sets
are finite, i.e., |Dt| = K, ∀t ∈ [T ]. If STLO is run with
ε > 0, then with probability at least 1− δ, for any objective
i ∈ [m], its regret satisfies

R̂i(T ) ≤ 50dU lnTγ2T · ε−2 + 2KTε

where γT = R
√
d ln(2mT/δ) + U .

Remark 1 Theorem 1 states that STLO achieves a regret
bound of Õ(d2 · ε−2 + KTε) for all objectives. Let ε =

d
4
3 (KT )−

1
3 , this bound can be minimized to Õ(d

4
3 (KT )

2
3 ).

STLO allows the arm set Dt to be varied for t ∈ [T ], which
distinguishes itself from PF-LEX (Hüyük and Tekin 2021).
Furthermore, ε-chain relation in (9) can be realized with a
complexity of Õ(|Dt|), while the chain relation in PF-LEX
suffers from a complexity of O(|Dt|2). More details of im-
plementing ε-chain relation are available in Appendix A.

Although STLO is straightforward, it has two limitations.
First, the priority-based regret R̂i(T ) depends on the indi-
cator function I(·). Therefore, for any i ≥ 2, if there exists
some j ∈ [i − 1] such that 〈θj∗,x∗t 〉 > 〈θ

j
∗,xt〉, then the

instantaneous regret 〈θi∗,x∗t − xt〉 cannot be accumulated
to the total regret. Second, STLO is suboptimal for single
objective SLB problems because the lower bound for finite-
armed SLB is Ω(

√
dT ) (Chu et al. 2011).

Improved Algorithm: MTLO
In this section, we give an improved algorithm called Mul-
tiple Trade-offs under Lexicographic Ordering (MTLO),
which removes the indicator function of R̂i(T ) through a
new-designed arm filter and achieves the almost optimal re-
gret bound by employing a multiple trade-offs approach.
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Algorithm 2: Lexicographic Ordered Arm Filter (LOAF)

Require: candidate arm set D ⊆ Dt, confidence width W
1: Initialize the arm set D0 = D
2: for i = 1, 2, . . . ,m do
3: x̂it = argmaxx∈Di−1 ŷit(x) + wt(x)
4: Di = {x ∈ Di−1|ŷit(x) + wt(x) ≥ ŷit(x̂

i
t) +

wt(x̂
i
t)− (2 + 4λ+ 4λ2 + · · ·+ 4λi−1) ·W}

5: end for
6: Return the filtered arm set Dm

Lexicographic Ordered Arm Filter To demonstrate the
inspiration behind our proposed arm filter, we first clarify
why STLO requires the indicator function I(·) in its metric.
The core issue is that, for any i ≥ 2, while filtering arms
from Di−1t to Dit, the ε-chain relation ·Ciε· may result in the
absence of the lexicographic optimal arm x∗t . To clarify this
point, we provide a simple example in Figure 1.

1st

2nd

𝐿𝐿1

𝐿𝐿2

𝐿𝐿2/𝐿𝐿1 ≤ 𝜆𝜆𝒙𝒙𝑡𝑡∗

𝒙𝒙

Figure 1: Inspiration

Figure 1 depicts three arms, where the red point repre-
sents the lexicographic optimal arm x∗t . The square denotes
the confidence intervals for the first and second objectives.
Recall STLO (Steps 8-11), x̂1

t = x∗t and D1
t contains both

x∗t and x since their confidence intervals for the first objec-
tive intersect. However, D2

t loses x∗t because x̂2
t = x and

x̂2
t is not chained with x∗t in the second objective. If m > 2,

such a case make the subsequent filtering operation for i > 2
has no optimal arm for comparison, rendering the theoretical
analysis infeasible. Thus, the metric R̂i(T ) has the indicator
function, which is an assumption that the lexicographic op-
timal arm is not lost during the analysis of the regret bound.

To remove the indicator function, we need to design a fil-
ter that dose not lose the optimal arm x∗t . We observe that for
a fixed arm, the width of confidence interval is equal among
different objectives. Therefore, we can scale the confidence
intervals of the objective i ≥ 2 to ensure the confidence in-
tervals of x∗t and x̂it are intersected. Inspired by this idea, a
trade-off parameter λ ≥ 0 is introduced, such that for any
t ∈ [T ] and x ∈ Dt, λ satisfies the following inequality,

〈θi∗,x− x∗t 〉 ≤ λ · max
j∈[i−1]

〈θj∗,x∗t − x〉, i ∈ [m]. (10)

λ quantifies the trade-off among different objectives, which
is smaller than a commonly used trade-off parameter called
global trade-off (Miettinen 1999, Definition 2.8.5). Further
discussion about λ is provided in the subsequent section.

Equipped with this new introduced parameter λ, we de-
sign a novel Lexicographic Ordered Arm Filter (LOAF), as
detailed in Algorithm 2. At the start, LOAF initializes the

candidate arm set D0 with the input arm set D ⊆ Dt. Then,
LOAF sequentially refines the candidate arm set from the
first objective to the last objective through the intersection
of the scaled confidence intervals.

Specifically, for the i-th objective, LOAF first selects the
arm with highest upper confidence bound from Di−1, i.e.,
x̂it = argmaxx∈Di−1 ŷit(x) + wt(x). Then, LOAF retains
the arms whose upper confidence bound of the i-th objective
are not far from that of x̂it, i.e.,

Di =
{
x ∈ Di−1|ŷit(x) + wt(x) ≥ ŷit(x̂it) + wt(x̂

i
t)

−(2 + 4λ+ 4λ2 + · · ·+ 4λi−1) ·W
}

(11)
whereW is the upper bound of the confidence term for arms
in D, i.e., maxx∈D wt(x) ≤ W . The scaling parameter 2 +
4λ+ 4λ2 + · · ·+ 4λi−1 is carefully designed to avoid losing
the optimal arm x∗t . After performing this filtering process
for all m objectives, LOAF outputs the arm set Dm. The
theoretical guarantee for LOAF is outlined as follows.

Proposition 1 For Algorithm 2, if x∗t ∈ D and wt(x) ≤W
for any x ∈ D, then with probability at least 1−δ, x∗t ∈ Dm
and for any x ∈ Dm,

〈θi∗,x∗t − x〉 ≤ 4(1 + λ+ λ2 + · · ·+ λi−1) ·W, i ∈ [m].

Proposition 1 states that if the input arm set D has the
optimal arm x∗t , LOAF does not lose x∗t during the filtering
process, which means the indicator function of R̂i(T ) can
be removed. Meanwhile, Proposition 1 provides an upper
bound on the reward gap between x∗t and other arms in Dm.

Multiple Trade-offs Approach Taking LOAF as the arm
filter, we have removed the indicator function of the met-
ric R̂i(T ). Now, our focus shifts towards employing LOAF
effectively to improve the regret bound in Theorem 1.

As expressed in Proposition 1, LOAF requires the confi-
dence terms are smaller than W . Similar to the utilization of
the chain relationship in STLO, one possible approach is to
divide the decision-making process into two cases:

(a) If the confidence term of all arms in Dt is smaller than
W , apply LOAF to filter out the promising arms and
randomly play an arm from these arms;

(b) If there exists an arm in Dt with confidence term larger
than W , play this arm to reduce its uncertainty.

Proposition 1 indicates that in case (a), a smaller value ofW
yields a better output arm setDm. However, a small value of
W leads an increased number of trials in case (b), which is
pure exploration and results in a large instantaneous regret.
Consequently, setting W as small as possible is undesirable.

To address this dilemma, we propose a multiple trade-
offs approach, which divides the decision-making process
at each round into multiple stages and executes a more
refined trade-off between exploration and exploitation as
the stages progress. The new-designed algorithm is called
MTLO, whose details are shown in Algorithm 3.

At each round t, MTLO first calculates the estimators θ̂it
for each objective i ∈ [m] by Eq. (6). It then computes the
estimated rewards and confidence interval width for each
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Algorithm 3: Multiple Trade-offs under Lexicographic Or-
dering (MTLO)

Require: trade-off parameter λ, time horizon T
1: for t = 1, 2, . . . , T do
2: Compute the estimators θ̂it, i ∈ [m] by Eq. (6)
3: Compute the estimated rewards and confidence terms

for all arms in Dt by Eq. (7)
4: Initialize s = 1,Dt,1 = Dt
5: repeat
6: if wt(x) ≤ 1/

√
T for any x ∈ Dt,s then

7: Invoke the Algorithm 2 to filter the promising
arms Dt,T = LOAF (Dt,s, 1/

√
T )

8: Randomly play an arm xt ∈ Dt,T and observe
[y1t , y

2
t , . . . , y

m
t ]

9: else if wt(xt) > 2−s for some xt ∈ Dt,s then
10: Play the arm xt and observe [y1t , y

2
t , . . . , y

m
t ]

11: else
12: Invoke the Algorithm 2 to filter the promising

arms Dt,s+1 = LOAF (Dt,s, 2−s)
13: Update s = s+ 1
14: end if
15: until an arm xt is played.
16: Update Xt+1 = [x>τ ]τ∈[t], Y

i
t+1 = [yiτ ]τ∈[t], i ∈ [m]

17: end for

arm in Dt, using the formula (7). Next, MTLO initiates a
repeat-until loop to iteratively refine the promising arms,
starting with Dt,1 = Dt and s = 1. At each stage s, MTLO
first checks if the confidence terms for all arms in Dt,s are
less than or equal to 1/

√
T . If this is the case, MTLO in-

vokes LOAF with input arm set Dt,s and maximum confi-
dence width 1/

√
T , obtaining the promising arm set Dt,T .

Then, MTLO randomly plays an arm xt ∈ Dt,T and records
its rewards. Alternatively, if the confidence term of some
arm in Dt,s exceeds 2−s, MTLO plays this arm for explo-
ration and records its rewards. Lastly, if all arms in Dt,s
have confidence terms less than or equal to 2−s, MTLO in-
vokes LOAF with input arm set Dt,s and maximum con-
fidence width 2−s, which filters out a promising arm set
Dt,s+1. MTLO then increases the stage index to s + 1 and
proceeds into the next stage. As the stage goes, the maxi-
mum confidence width W = 2−s decreases, leading to a
more refined filtering procedure in LOAF.

Let S = blnT c. Since 2−S < 1/
√
T , the repeat-until

loop terminates before the index s reaches S. After observ-
ing the rewards, MTLO updates the contextual information
matrix and historical reward vectors to prepare for the next
round. We have the following theorem for MTLO.

Theorem 2 Suppose that (2) and (3) hold. If MTLO is run
with λ satisfying (10), then with probability at least 1 − δ,
for any objective i ∈ [m], its regret satisfies

Ri(T ) ≤ 4(1+λ+λ2+· · ·+λi−1)·
(√

T + 10γT lnT
√
dT
)

where γT = R
√
d ln(2mT/δ) + U .

Remark 2 Theorem 2 states that MTLO achieves a regret

bound of Õ((1 + λi−1)d
√
T ) for the i-th objective, which

is almost optimal in terms of d and T (Dani, Hayes, and
Kakade 2008). For the first objective, MTLO achieves a re-
gret bound of Õ(d

√
T ), which aligns with the single objec-

tive SLB algorithms (Abbasi-yadkori, Pál, and Szepesvári
2011), and the increased regret for the subsequent objectives
is the cost of simultaneously optimizing multiple objectives.

Remark 3 If the arms are finite, by leveraging the technique
of Chu et al. (2011), we can easily obtain a regret bound of
Õ((1+λi−1)

√
dT ), which improves upon the existing regret

bound Õ((KT )
2
3 ) (Hüyük and Tekin 2021). Furthermore,

we adopt the general regret (4), which is more accurate than
the priority-based regret (1) (Hüyük and Tekin 2021).

Experiments
In this section, we present the empirical performance of
our algorithms. We adopt PF-LEX (Hüyük and Tekin 2021)
and OFUL (Abbasi-yadkori, Pál, and Szepesvári 2011) as
baselines, where PF-LEX is designed for lexicographic
MOMAB, and OFUL is a single objective SLB algorithm.

To compare with PF-LEX, we fix the arm sets as Dt =
{x̃1, x̃2, . . . , x̃K} ⊆ Rd for any t ≥ 1. Both the arm num-
ber K and feature dimension d are set as 10, which en-
sures that PF-LEX and our algorithms encounter the same
number of unknown parameters. For k ∈ [K], the arm
vector x̃k is set as the standard basis in Rd, whose k-
th element is 1 and all other elements are 0. The num-
ber of objectives is set as m = 3. We denote the inher-
ent vectors as θi∗ = [θi∗(1), θi∗(2), . . . , θi∗(10)], i ∈ [3].
The elements of θ1∗, θ

2
∗ and θ3∗ are specified as θ1∗(k) =

1 − minp∈{0.2,0.8,1.6} |0.2k − p|, θ2∗(k) = 1 − λ ×
minp∈{0.6,1.4} |0.2k− p| and θ3∗(k) = 1− λ× |0.2k− 1.5|,
k ∈ [10]. Here, we set λ to be 0.2 and 2 to explore the per-
formance of all algorithms across different problems.

For any arm x̃k ∈ Dt and i ∈ [m], its expected reward
is 〈θi∗, x̃k〉 = θi∗(k) as x̃k is the standard basis of Rd. Ac-
cording to the design of θ1∗(k), {x̃1, x̃4, x̃8} are the optimal
arms in the first objective. Similarly, the optimal arms for
both the first and second objectives are {x̃4, x̃8}. Therefore,
all three objectives has to be considered to determine the
lexicographic optimal arm {x̃8}. After playing the arm xt,
the reward of the i-th objective is sampled from a Gaussian
distribution with mean 〈θi∗,xt〉 and variance 0.1. To reduce
the randomness, each algorithm is run ten times, and we re-
port the average regret. We set T = 5 × 104 and δ = 0.01.
The exploration parameter ε for STLO and PF-LEX is set to
d

4
3 (KT )−

1
3 and (KT )−

1
3 , respectively, which are theoret-

ically optimal. To accelerate the convergence, we scale the
confidence terms of all algorithms by 0.1, which is a com-
mon practice in bandits (Li et al. 2012; Lu et al. 2019).

Figure 2 displays the general regret curves for the first and
third objectives. Subfigure (a) shows the results for λ = 0.2,
while subfigure (b) presents the results for λ = 2. In Fig-
ure 2(a), OFUL demonstrates the best performance in the
first objective, but shows linear regret in the third objec-
tive. The regret curves of MTLO flatten for both the first
and second objectives, indicating successful identification of
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Figure 2: Comparison of our algorithms versus OFUL and PF-LEX.

the lexicographic optimal arm. An interesting observation is
that while the regret curve of STLO’s third objective flattens,
its first objective experiences linear regret. This discrepancy
is due to the fact that the theoretically optimal ε for STLO
is 0.27 in our experiments, while the expected reward gaps
for the first and second objectives are 0.2 and 0.04, respec-
tively, indicating that most arms in Dt are ε-chained during
the filtering operation. Consequently, the filtered arm set D2

t
contains almost all arms. Step 12 of STLO selects the arm
with the highest confidence bound on the third objective, re-
sulting in small regret on the third objective. PF-LEX avoids
this issue as its theoretically optimal ε is 0.012 in our exper-
iments, allowing successful arm filtering based on the chain
relation. Although the regret curves of PF-LEX eventually
flatten, it consumes too many trials for exploration, leading
to higher regrets than MTLO in the first objective.

In Figure 2(b), there are two notable differences compared
to Figure 2(a). First, the regret curve for the third objective of
MTLO flattens more quickly in Figure 2(b). This is because,
based on the {x̃k}k∈[K] and {θi∗}i∈[3] in our experiments,
λ = 2 leads to a larger reward gap, aiding the identification
of the optimal arm. Second, we do not display the regret
curves for OFUL in Figure 2(b) due to the large regret asso-
ciated with its third objective. Including these curves would
obscure the plots of other algorithms. We provide the regret
curves of OFUL in Appendix E.

Further Discussion
This section provides a further discussion about the neces-
sity of introducing a new parameter to depict the relationship
among objectives in lexicographic bandit problem.

In the single objective bandit problem, the arm number
K or the dimension d is sufficient to reflect the difficulty of
finding the optimal arm. This is because K or d is the num-
ber of unknown parameters. However, in the lexicographic
bandit problem, the high-dimensional reward space brings
more unknown parameters, and the lexicographic order re-
stricts the location of the optimal reward in the reward space.
The difficulty brought by the added unknown parameters can
be reflected by the objective numberm, while the restriction
on the optimal reward requires a new parameter to depict.

Thus, we introduce the trade-off parameter λ in Eq. (10).
Moreover, employing the information about trade-offs is

common in various contexts (Athanassopoulos and Podi-
novski 1997; Nowak and Trzaskalik 2022). For instance,
Keeney (2002) employs the “value trade-offs” to describe
the extent to which a learner is willing to sacrifice one ob-
jective in pursuit of a specific gain in another objective. Sim-
ilarly, the term “trading-off” is employed to depict a scenario
where a learner, seeking incline in one criterion, must accept
a decline in another criterion (Ruiz et al. 2019). The global
trade-off is a ratio determining how much the value of one
criterion will rise per unit decrease in another criterion when
transitioning between decisions (Kaliszewski 2000). In our
context, the trade-off parameter λ is a ratio indicating how
much the value of the i-th objective will increase per unit de-
crease in the preceding i − 1 objectives when transitioning
between the optimal arm x∗ and other arms. Meanwhile, λ
is not confined to a specific value, and any upper bound of λ
is allowed in Algorithm 3. An example of such estimates is
the judgement “1 tonne of sulphur dioxide (SO2) emissions
is at most 10 times as harmful as one tonne of carbon oxide
(CO) emissions”, where λ = 10 (Podinovski 1999).

Conclusion and Future Work
We investigated lexicographic online learning in MOSLB
and extended the metric of lexicographic bandits from the
priority-based regret (1) to the more accurate regret (4). We
presented two algorithms: STLO and MTLO. STLO is a lin-
ear bandit adaptation of PF-LEX (Hüyük and Tekin 2021),
and we reduced PF-LEX’s computational complexity by the
ε-chain relation. MTLO settles the infinite-armed setting and
improves the regret bound to Õ((1+λi−1)d

√
T ) for the ob-

jective i ∈ [m], which is almost optimal in terms of d and
T . MTLO’s novelties include a new arm filter and a multiple
trade-off approach. These techniques can be easily adapted
to other bandit models, such as finite-armed SLB (Chu et al.
2011), generalized linear bandits (Jun et al. 2017) and uni-
modal bandits (Yu and Mannor 2011).

Currently, MTLO’s regret bound exhibits an exponential
relationship between λ and i. Future work will focus on re-
ducing this and constructing a matching lower bound.
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Hüyük, A.; and Tekin, C. 2021. Multi-objective multi-armed
bandit with lexicographically ordered and satisficing objec-
tives. Machine Learning, 110(6): 1233–1266.
Jin, T.; Xu, P.; Xiao, X.; and Anandkumar, A. 2022. Finite-
Time Regret of Thompson Sampling Algorithms for Expo-
nential Family Multi-Armed Bandits. In Advances in Neural
Information Processing Systems 35, 38475–38487.
Joseph, M.; Kearns, M.; Morgenstern, J.; and Roth, A. 2016.
Fairness in Learning: Classic and Contextual Bandits. In
Advances in Neural Information Processing Systems 29,
325–333.
Jun, K.-S.; Bhargava, A.; Nowak, R.; and Willett, R. 2017.
Scalable Generalized Linear Bandits: Online Computation
and Hashing. In Advances in Neural Information Processing
Systems 30, 99–109.
Kaliszewski, I. 2000. Using trade-off information in
decision-making algorithms. Computers & Operations Re-
search, 27(2): 161–182.

21857



Keeney, R. L. 2002. Common Mistakes in Making Value
Trade-Offs. Operations Research, 50(6): 935–945.
Kone, C.; Kaufmann, E.; and Richert, L. 2024. Bandit Pareto
Set Identification: the Fixed Budget Setting. In Proceedings
of The 27th International Conference on Artificial Intelli-
gence and Statistics, 2548–2556.
Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics,
6(1): 4–22.
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