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Abstract
Multi-objective multi-armed bandit (MOMAB)
problems are crucial for complex decision-making
scenarios where multiple conflicting objectives
must be simultaneously optimized. However, most
existing works are based on the linear assumption
of the feedback rewards, which significantly con-
strains their applicability and efficacy in captur-
ing the intricate dynamics of real-world environ-
ments. This paper explores a multi-objective neu-
ral bandit (MONB) framework, which integrates
neural networks with the classical MOMABs. We
adopt random scalarization to accommodate the
special needs of a practitioner by setting an appro-
priate distribution on the regions of interest. Us-
ing the trade-off capabilities of upper confidence
bound (UCB) and Thompson sampling (TS) strate-
gies, we design two novel algorithms, MONeural-
UCB and MONeural-TS. Theoretical and empirical
analysis demonstrate the superiority of our methods
in multi-objective or multi-task bandit problems,
which makes great improvement over the classi-
cal linear MOMABs. Code is available through
https://github.com/jicheng9617/MONB.

1 Introduction
Multi-armed bandits (MABs), a fundamental concept in de-
cision theory and reinforcement learning, offer a rich frame-
work to study decision making under uncertainty [Bubeck et
al., 2012; Lattimore and Szepesvári, 2020]. Traditional MAB
problems involve a single agent that interacts with multiple
options, each with unknown reward distributions. The agent’s
objective is to maximize its cumulative reward over time
through sequential interactions, balancing the exploration of
lesser-known arms against exploiting those known to yield
high rewards. This exploration-exploitation trade-off is cen-
tral to many real-world applications, ranging from clinical tri-
als [Villar et al., 2015] to personalized recommendations [Li
et al., 2010; Li et al., 2011].

Expanding on this framework, multi-objective multi-armed
bandits (MOMABs) introduce complexity by having multi-
ple, often conflicting objectives that need to be optimized si-
multaneously [Drugan and Nowe, 2013]. In these problems,

the challenge is not only to balance exploration and exploita-
tion, but also to navigate the trade-offs between competing
objectives [Tekin and Turgay, 2018]. This extension is cru-
cial in scenarios where decisions must be made under mul-
tiple criteria, for example, diversity and novelty in the rec-
ommendation system [Rodriguez et al., 2012]. To measure
the performance of multiple rewards, the Pareto order is gen-
erally used to fit the scenario where there is no preference
between objectives [Lu et al., 2019]. Another way is to trans-
form multi-objective metrics into a single value with scalar-
ization functions [Drugan and Nowe, 2013], where linear and
Chebyshev scalarization are widely used. Based on different
methods, the corresponding optimal arms can be determined,
which are used to gauge the performance of an MOMAB al-
gorithm.

However, a significant limitation in the existing literature
on MOMABs is the predominance of models that assume lin-
ear reward functions. Although linear models offer simplicity
and analytical tractability, they often fail to capture the com-
plexity and nonlinearity inherent in many practical scenarios
[Srinivas et al., 2010]. This limitation restricts the applica-
bility and effectiveness of the derived solutions, especially
in environments where the relationships between actions and
objectives are inherently nonlinear or where interactions be-
tween different objectives are complex.

To address these challenges, this work develops provably
efficient multi-objective neural bandits (MONBs), which har-
ness deep neural networks (DNNs) [LeCun et al., 2015] as
universal approximators to model the reward functions in
MOMABs. Random scalarization is considered to cater for
the user’s preference between multiple metrics. To trade off
the abilities between exploration and exploitation, the upper
confidence bound (UCB) and Thompson sampling (TS) are
considered to minimize regret. The main contributions are
summarized as follows.

• We propose a flexible framework for MONBs using ran-
dom scalarizations that can flexibly cater to the pref-
erence of users by specifying the region of interests.
Leveraging DNNs, we alleviate the limitation of linear
assumption on the feedback rewards and propose two
algorithms: multi-objective neural UCB (MONeural-
UCB) and multi-objective neural TS (MONeural-TS).
To the best of our knowledge, this is the first work to
analyze DNNs-based MOMAB algorithms with regret
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Paper Objective Model Regret

[Zhou et al., 2020] Single Neural Bandits Õ(d̃
√
T )

[Zhang et al., 2021] Single Neural Bandits Õ(d̃
√
T )

[Hwang et al., 2023] Single Neural Bandits Õ(d̃
√
T ) or Õ(

√
d̃TK)

[Turgay et al., 2018] Multiple Lipschitz Bandits Õ(T (1+dp)/(2+dp))
[Lu et al., 2019] Multiple Generalized Linear Bandits O(d

√
T )

[Cheng et al., 2024] Multiple Linear Bandits Õ((dT )2/3)

MONeural-UCB (This work) Multiple Neural Bandits Õ(md̃
√
T )

MONeural-TS (This work) Multiple Neural Bandits Õ(d̃
√
Tm/p̃m)

Table 1: Comparison of Related Works on the number of objective, model type, and the regret guarantee. Our methods reach the
optimal regret compared with the multi-objective methods, while alleviate the linear assumption by the use of neural bandit model.

guarantees.
• The proposed MONeural-UCB is statistically efficient

and can run with at most Õ(md̃
√
T ) regret, where d̃

is the effective dimension of the neural tangent kernel
matrix, and m is the number of objectives. In addi-
tion, the MONeural-TS method is efficient in achieving
Õ
(
d̃
√
Tm/p̃m

)
regret. The results matches the corre-

sponding regret bounds in linear bandits.
• We conduct experiments on synthetic, multi-objective

optimization, and real-world cases, where the evalua-
tions demonstrate the superior performance of our meth-
ods. We observe that the benchmark methods perform
extremely poorly when the modeling assumptions are
broken, while in contrast our methods work well.

2 Related Work
2.1 Neural Bandits
In the realm of stochastic bandits, linear models have been
extensively studied and are commonly employed due to their
simplicity and analytical tractability. The foundational work
on linear stochastic bandits can be traced back to the sem-
inal paper by [Auer, 2002], which introduced the use of
confidence bounds to efficiently manage the exploration-
exploitation trade-off in environments with linear reward de-
pendencies. Building on these concepts, Dani et al. [2008]
explored stochastic linear optimization under bandit feed-
back, which emphasized the efficiency of algorithms in sce-
narios where only partial feedback is available, marking
a significant step in understanding the dynamics of linear
stochastic optimization. Further advancements were made by
[Abbasi-yadkori et al., 2011], who contributed to this field
by proposing improved algorithms for linear stochastic ban-
dits, which enhance the regret bound by a logarithmic factor.
Besides, the linear stochastic bandits have been thoroughly
explored over decades [Chu et al., 2011; He et al., 2022;
Hu et al., 2021; Alieva et al., 2021; Xue et al., 2023].

Although successful in both theory and practice, the linear
assumption highly restricts or even fails to apply to real-world
problems, which strongly motivates the study of nonlinear
or nonparametric bandits. Filippi et al. [2010] explored the

non-linear bandit setting using the Generalized Linear Model
(GLM) framework, however, fairly restrictive assumptions
are still required on the feedback functions. Furthermore,
Valko et al. [2013] extended the linear assumption by the ker-
nel tricks, which requires that the expected reward be an arbi-
trary linear function of the contexts’ images in the related re-
producing kernel Hilbert space (RKHS). To further alleviate
the limitation of the assumption, researchers attempted to use
the universal approximation ability of DNNs as a surrogate
of the reward feedback. For example, the work [Riquelme et
al., 2018; Zahavy and Mannor, 2019] achieved great success
in empirical experiments by taking all but the last layers of a
DNN as feature mapping, thanks to the strong representation
ability of DNNs. However, no theoretical guarantee for the
performance was provided due to the non-linearity of DNNs.

With the development of generalization and optimization
theorem of DNNs [Jacot et al., 2018; Cao and Gu, 2019],
neural contextual bandits have attracted tremendous atten-
tion [Zhou et al., 2020; Zhang et al., 2021; Kassraie and
Krause, 2022]. Zhou et al. [2020] first proved the upper
bound of UCB-typed neural bandits, whose regret is guar-
anteed by Õ(d̃

√
T ). Later, Zhang et al. [2021] developed

the neural bandit algorithm with the traditional TS strat-
egy and proved its advanced performance in the real world
dataset. Recently, Salgia [2023] extended the analysis by
ReLU neural networks to a general set of smooth activa-
tion functions, and non-asymptotic error bounds between the
over-parameterized net and the NTK were analyzed to link
the smoothness of the activation functions and the kernels.
In addition, DNNs were employed in combinatorial bandits
[Hwang et al., 2023] to improve the performance of select su-
per arm sets, and in federated setting [Dai et al., 2023] when
multiple agents are involved. Based on the development of
the theorem, applications have been made in the fields of rec-
ommendation and large language models [Ban et al., 2024;
Chen et al., 2024].

2.2 Multi-Objective Bandits
To handle bandit problems with multiple objectives, Drugan
and Nowe [2013] first introduced the MOMAB with Pareto
order and developed two algorithms that involve the upper
bound O(K log T ) of the Pareto regret. Turgay et al. [2018]
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(d) MOMAB with Random Scalarization

𝑟𝑟1, 𝑟𝑟2: Objectives 𝜆𝜆1, 𝜆𝜆2: Preference for the objectives  : Bandit arms  : Optimal arms

Figure 1: A demonstration for MOMABs with different preference. (a) MOMAB with Pareto order treats the multiple objectives equally, and
the arms with the objectives in Pareto front are optimal. (b). MOMAB with lexicographic order has the highest priority for the first objective
followed by the later ones. (c) A prior p(λ), the dotted line, imposes a distribution on the preference vector. λt is a sampled vector. Setting
preferred distribution, the users can cater their preference on specific scenarios. (d) Based on the specialized distribution, the MOMAB can
identify the specific optimal arms with the preference.

then studied the bandit model with contextual information,
where the expected reward satisfied the Lipschitz condition.
Later, Lu et al. [2019] considered GLM based bands with an
online learning framework. Xu et al. [2023] presented new
algorithms and analyses for adversarial MOMAB, providing
insights into the formulation of Pareto regrets and their appli-
cations. Related works focused on the identification of Pareto
optimal arms considering limited budget are also interested
in MOMABs [Van Moffaert et al., 2014; Auer et al., 2016;
Kone et al., 2023; Kim et al., 2024].

Besides the Pareto relationship among multiple objec-
tives, the dominance and hierarchical relations are also con-
sidered in MOMABs community. For example, an algo-
rithm for MOMAB problems where one objective domi-
nates the other was proposed in [Tekin and Turgay, 2018]
and achieves Õ(T (2α+d)/(3α+d)) on both their developed
2D regret and Pareto regret. [Hüyük and Tekin, 2021] first
analyzed MOMAB under lexicographic ordering and de-
veloped a priority-based regret to assess the bandit algo-
rithm. Their developed algorithm obtained a suboptimal up-
per bound Õ

(
K

2
3T

2
3

)
for the priority-based regret. Based

on this concept, [Xue et al., 2024; Xue et al., 2025] intro-
duced a new parameter to depict the difficulty of lexicograph-
ical relations, and improved the algorithm with a multi-stage
decision-making strategy. [Cheng et al., 2024] considered
a more general relationship, namely mixed lexicographic-
Pareto orders, between involved multiple metrics and devel-
oped the corresponding stochastic linear algorithms. Most
existing work in MOMABs still requires the linear assump-
tion, leaving a huge gap between the general reward functions
and the MOMABs community.

3 Problem Setting
In this section, we provide the details of the model and for-
mulate the multi-objective regret minimization problem with
personalized scalarization.

Model: We consider a stochastic contextual bandit prob-
lem with K arms and specific T rounds in this work. At each
round, the learner first observes the contextual information
of the K arms Xt = {xt,a ∈ Rd | a ∈ [K]}. For brevity,

{xi}TK
i=1 denotes the collection of {x1,1,x1,2, . . . ,xT,K}.

Rewards: Once the agent selects an action at, it receives a
stochastic reward vector consisting of m components rt,at

=
[r1t,at

, r2t,at
, . . . , rmt,at

]. In this work, we assume that each re-
ward comes from an unknown function, which can be formu-
lated as,

rit,at
= hi(xt,at) + ξt, (1)

where hi is the unknown function for i-th objective which
satisfies 0 ≤ hi(x) ≤ 1 for any x ∈ {xi}TK

i=1, and ξit is v-sub-
Gaussian noise satisfying E[ξit | x1,a1

, . . . ,xt−1,at−1
] = 0.

Performance Metric: The performance of MOMABs
cannot be directly assessed due to the presence of multiple
objectives, leading to the categorization of MOMABs based
on how preferences over these objectives are defined. As il-
lustrated in Figure 1, the Pareto order is a commonly used
metric for evaluating performance, where the Pareto sub-
optimal gap serves as a measure of deviation from optimal-
ity. However, this gap can be minimized by focusing exclu-
sively on a single objective, which may result in biased and
unfair arm selection. Practitioners can incorporate their pref-
erences by employing a lexicographic order among the ob-
jectives. Nevertheless, the lexicographic approach assumes
that one objective has absolute priority over the others, which
limits its applicability in many real-world scenarios. In con-
trast to these preference settings, random scalarization offers
a more flexible solution by introducing a distribution over the
preference weights. This allows the algorithm to focus on
specific regions of interest, as demonstrated in Figure 1 (d),
thereby better accommodating diverse user needs.

To judge the performance with m objectives, we consider a
set of scalarization functions Sλ parameterized by the weight
vector λ = [λ1, . . . , λm] ∈ Λ. Without loss of generality, we
make the following assumption about the scalarization func-
tion.

Assumption 1. For all λ ∈ Λ, Sλ is Lλ-Lipschitz and mono-
tonically increasing in all the coordinates. Formally,

Sλ(r1)− Sλ(r2) ≤ Lλ∥r1 − r2∥, ∀λ ∈ Λ, r1, r2 ∈ Rm,

Sλ(r1) < Sλ(r2) whenever r
i
1 < ri2.

(2)

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

4916



Algorithm 1 Multi-objective Neural Upper Confidence Bound with Scalarization (MONeural-UCB)

1: Input: Weight distribution p(λ), Time horizons T , regularization parameter κ, network width m.
2: Initialization: Initialize m neural networks θi

0, and set Ui
0 = κI for all i ∈ [m].

3: for t = 1, . . . , T do
4: Sample λt from p(λ)
5: Observe arms’ contexts {xt,k}k∈[K]

6: for k = 1, . . . ,K do
7: for i = 1, . . . ,m do
8: Evaluate upper confidence bound ui

t,k = f i(xt,k;θ
i
t−1) + γt−1||g(xt,k;θt−1)/

√
m||(Ui

t−1)
−1

9: end for
10: end for
11: Pull the arm at and observe the rewards, where at = maxa∈[K] Sλt(ut,k) and ut,k = [u1

t,k, . . . , u
m
t,k]

⊤

12: Optimize θi
t by gradient descent solving Eq. (5) for J steps

13: Update Ui
t = Ui

t−1 + g(xt,at
;θi

t−1)g(xt,at
;θi

t−1)
⊤/m for all i ∈ [m]

14: end for

Leveraging the Theorem 1, the best arm at each round can
be determined as the one with the maximum scalarization val-
ues with the specific weight vector.
Theorem 1 ([Miettinen, 1999]). Let z∗ be the optimal so-
lution of an strongly decreasing scalarization function Sλ :
Rm → R. Then z∗ is (weakly) Pareto optimal.

Assume that the weight vector comes from a prior distri-
bution p(λ) with support Λ. In this scenario, users can define
their personalized distribution to get desirable performance.
Based on the scalarization, the performance of an algorithm
can be gauged by pseudo regret (or regret for short) as,

RT = Eλ∼p(λ)

[
E

[
T∑

t=1

Sλ(rt,a∗
t
)− Sλ(rt,at

)

]]
, (3)

where a∗t = argmaxa∈[K] E [Sλ(rt,a)] is the optimal action
at round t that maximizes the expectation of the scalarized
rewards.

Reward Approximation: To predict the reward values at
each round, we employ neural network to learn the reward hi

in Eq. (1), formally,

f i(x;θ) =
√
MWLσ (WL−1σ (· · ·σ(W1x))) , (4)

where σ(x) = max{x, 0} is the ReLU activation function,
W1 ∈ RM×d, Wl ∈ RM×M for 2 ≤ l ≤ L − 1, WL ∈
R1×M , and θ = [vec(W1)

⊤, . . . , vec(WL)
⊤]⊤ ∈ Rp with

p = M +Md+M2(L− 2). The gradient of the network is
denoted by gi(x;θ) = ∇θf

i(x;θ).

4 Multi-objective Neural UCB
(MONeural-UCB)

4.1 Learning Algorithm
In this section, we first present the algorithm MONeural-
UCB, which is described in Algorithm 1. To approximate
multiple feedback, m neural networks are maintained through
the algorithm for m objectives independently, moreover, the
networks are initialized by random generating each entry of
θ0 from an appropriate Gaussian distribution: for l ∈ [L−1],
Wl = (W,0;0,W), where each entry of W is generated

independently from N (0, 4/m); WL is set as (w⊤,−w⊤)
with entry sampling from N (0, 2/m). To balance between
exploration and exploitation, MONeural-UCB employs the
optimism in the face of uncertainty (OFU) principle during
the process. In round t, the learner first evaluates the upper
confidence bounds ui

t,k for each arm with respect to m objec-
tives. Then the possibly optimal arm is determined through
the scalarization function and sampled personal preference.
After observing the reward from the oracle, the algorithm up-
dates the parameters of the neural network {θi

t}mi=1 by min-
imizing the following loss function using gradient descent
with step size η for J times.

Li(θ) =
1

2

t∑
k=1

(
f i(xk,ak

;θ)− rik,ak

)2
+

Mκ

2
||θ − θ0||2,

(5)
where, the hyperparameter κ controls the level of ℓ2-
regularization with respect to the initialization of the net-
works.

4.2 Theoretical Analysis
The analysis is based on the neural tangent kernel, whose
main component is introduced by the following expression.
Definition 1 ([Jacot et al., 2018]). Define

H̃
(1)
i,j = Σ

(1)
i,j =

〈
xi,xj

〉
,A

(ℓ)
i,j =

(
Σ

(ℓ)
i,i Σ

(ℓ)
i,j

Σ
(ℓ)
j,i Σ

(ℓ)
j,j

)
,

Σ
(ℓ+1)
i,j = 2E

(y,z)∼N
(
0,A

(ℓ)
i,j

)[σ(y)σ(z)],
H̃

(ℓ+1)
i,j = 2H̃

(ℓ)
i,jE(y,z)∼N

(
0,A

(ℓ)
i,j

) [σ′(y)σ′(z)] +Σ
(ℓ+1)
i,j .

Then, H = (H̃(L) +Σ(L))/2 is called the neural tangent
kernel (NTK) matrix on the contexts {xi}TK

i=1.
Based on the kernel methods, the effective dimension of the

NTK matrix H can be defined as follows.
Definition 2. The effective dimension d̃ of the NTK matrix is
defined as

d̃ =
log det(I+H/λ)

log(1 + TK/λ)
(6)
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Algorithm 2 Multi-objective Neural Thompson Sampling with Scalarization (MONeural-TS)

1: Input: Weight distribution p(λ), Time horizons T , regularization parameter κ, network width m, exploration variance ρ.
2: Initialization: Initialize m neural networks θi

0, and set Ui
0 = κI for all i ∈ [m].

3: for t = 1, . . . , T do
4: Sample λt from p(λ)
5: Observe arms’ contexts {xt,k}k∈[K]

6: for k = 1, . . . ,K do
7: for i = 1, . . . ,m do
8: (σi

t,k)
2 = κgi(xt,k;θ

i
t−1)

⊤(Ui
t−1)

−1gi(xt,k;θ
i
t−1)/m

9: Sample reward r̃it,k ∼ N
(
f i(xt,k;θ

i
t−1), (ρσ

i
t,k)

2
)

10: end for
11: end for
12: Pull the arm at and observe the rewards, where at = maxa∈[K] Sλt

(r̃t,k) and r̃t,k = [r̃1t,k, . . . , r̃
m
t,k]

⊤

13: Optimize θi
t by gradient descent solving Eq. (5)

14: Ui
t = Ui

t−1 + gi(xt,at ;θ
i
t)g

i(xt,at ;θ
i
t)

⊤/m for all i ∈ [m]
15: end for

The effective dimension can be thought of the actual di-
mension of the Reproducing Kernel Hilbert Space (RKHS)
restricted by the given contexts, and it measures how quickly
the eigenvalues diminishes by logarithm of T . Without loss of
generality, we suppose the following conditions on the con-
texts:
Assumption 2. H ⪰ λ0I for some λ0 > 0. Moreover, for any
i ∈ [TK], ∥xi∥2 = 1 and [xi]j = [xi]j+ d

2
for 1 ≤ j ≤ d

2 .

This mild assumption can be simply reached by setting
x′ = [x⊤,x⊤]⊤ followed by normalization. Based on the
assumptions and definitions above, we can upper-bound the
regret of the proposed algorithm as the following theorem
states. The proof of the theorem can be found in Appendix.
Theorem 2. Assume the number of arms to be finite, i.e. K <
∞. Let d̃ be the effective dimension for the network, and
hi = [hi(xj)]

TK
j=1 ∈ RTK . If MONeural-UCB runs with

m ≥ poly(T, L,K, κ, λ−1
0 , S−1, log(1/δ)),

η = C1(TL+Mκ)−1, δ ∈ (0, 1),

κ ≥ C2LK,S = max
i∈[m]

√
2hi⊤H−1hi,

J = 2 log
κS√

T (κ+ C3TL)

TL

κ
= Õ(TL/κ),

for some positive constants C1, C2, C3, then with probability
at least 1− δ, the cumulative regret can be upper-bounded by

RT = Õ

(√
md̃T

√
max

{
md̃, S

})
. (7)

Remark 1. Theorem 2 establishes the upper bound of regret
by O(md̃

√
T ). The result matches that of the start-of-the-art

multi-objective contextual bandits. If the feedback function
h belongs to the RKHS H induced by the NTK w.r.t. each
objective, then the RKHS norm ∥hi∥H ≥ hi⊤H−1hi, and
the regret bound can be further denoted as

RT = Õ

(√
md̃T

√
max

{
md̃,max

i∈[m]
∥hi∥H

})
. (8)

5 Multi-objective Neural TS (MONeural-TS)
5.1 Learning Algorithm
In this section, we develop the TS-based method consider-
ing neural networks, MONeural-TS. Instead of focusing on
the posterior estimate of the model parameters, the method
maintains a Gaussian distribution for each feedback reward,
where the mean values are the output of the networks and
the variance is evaluated from the corresponding feature map.
The TS method samples the rewards from the distribution and
then uses the sampled rewards with scalarization function to
determine the sub-optimal arms.

5.2 Theoretical Analysis
Under the assumption stated above, the performance of the
proposed MONeural-TS method can be measured using the
following theorem.

Theorem 3. Assume that the width of the neural networks
satisfies the condition in Theorem 2. If MONeural-TS runs
with

η = C1(TML+Mκ)−1, κ = max{1 + 1/T,C2LK},
J = (1 + TL/κ)(C3 + log(T 3Lκ−1 log(1/δ)))/C1,

ρ = B + ν

√
d̃ log(1 + TK/κ) + 2− 2 log δ,

B = max

{
1/(22e

√
π),
√

max
i∈[m]

2hi⊤H−1hi

}
,

for positive constants C1, C2, C3, p̃ = 1/(4e
√
π), then with

probability at least 1− δ, the regret can be bounded as

RT = Õ
(
d̃
√
Tm/p̃m

)
. (9)

Remark 2. The regret bound involves an exponential fac-
tor of m, which may be computationally prohibitive in many-
objective problems. To mitigate this issue, we can draw mul-
tiple independent samples and select the most optimistic one,
who has the highest scalarization function metric, following
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Figure 2: Cumulative regret of MONeural-UCB and MONeural-TS on the synthetic cases. Results are averaged over 10 different randomly
sampled parameters with the standard deviation shown as shaded areas.
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Figure 3: Iterative history of the cumulative regrets on the MOO cases.

a technique adapted from [Hwang et al., 2023]. This results
in a regret bound of

RT = Õ(d̃
√
Tm). (10)

Remark 3. Theorem 2 and Theorem 3 all depend on the con-
dition that the width of the networks must be sufficiently large,
while empirical experiments find that networks with much
small size work efficiently. This phenomenon is due to the
huge gap between the practical application and the NTK the-
orem, which has also been indicated in the single-objective
version of neural bandits [Zhou et al., 2020; Zhang et al.,
2021].

Remark 4. When dealing with a scenario where the time
horizon is unknown, the doubling trick [Cesa-Bianchi and
Lugosi, 2006] can be employed to adapt the algorithm. The
key implementation is to restart the algorithm at each non-
overlapping interval, and a similar regret Õ(d̃

√
Tm) can be

verified.

Remark 5. Updating m neural networks can be costly when
m is large. In this way, we can conduct the algorithm in
batched setting, i.e., update the networks after several rounds.
The rarely switching strategy [Abbasi-yadkori et al., 2011]
can be used to save computation. Besides, a large number of
the parameters of the neural netowrks may result in enormous
computational cost in the inverse of the matrix. In practical
use, we can only maintain the diagonal of the matrix U i

t to
reduce the cost, as indicated in [Zhou et al., 2020].

6 Numerical Experiments
In this section, we test numerical experiments on syntheti-
cally generated and real-world data sets to verify the perfor-
mance of our theoretical findings. We compare our meth-
ods with a multi-objective stochastic linear bandits (MOSLB)
method, which is adapted from the scalarized MOMAB
method with UCB exploration [Drugan and Nowe, 2013]. All
implementations are performed on a dedicated system con-
figured with an Intel Core i7-9700K CPU and an NVIDIA
GeForce RTX 2080 Ti GPU.

6.1 Synthetic Cases
We first validate our proposed methods on two synthetic data
generated as follows.

• Quadratic Reward. The reward for each objective is
given by rit,k = x⊤

t,kA
⊤
i Aixt,k + ξit, ∀i ∈ [m], where

the contexts xt,k, ∀k ∈ [K] are generated by uniform
sampling in [0, 1]d independently, and each entry of the
matrix Ai ∈ Rd×d is sampled by N (0, 1). The noise for
each objective is independently drawn from the Gaus-
sian distribution N (0, 0.25) for all arms w.r.t. each ob-
jective. We choose m = 2, d = 10, and K = 10 at this
time.

• Cosine Reward. The cosine function cos(3x⊤
t,kθ

∗
i ) is

adapted as the unknown function hi in this case, the
contexts are generated based on U [0, 1]d independently,
and the parameters θ∗

i are first generated according to
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Algorithm Metric Varying K Varying d Varying m
K = 10 K = 20 K = 30 d = 10 d = 20 d = 30 m = 2 m = 3 m = 5

MOSLB Regret 83.47 147.8 219.6 83.47 1269.4 1481.0 83.47 215.9 225.0
Time (s) 3.90 4.31 4.93 3.90 4.10 4.53 3.90 5.13 5.55

MONeural
(UCB)

Regret 14.60 20.79 23.91 14.60 94.79 307.6 14.60 15.56 15.24
Time (s) 73.02 75.71 76.45 73.02 79.21 76.83 73.02 82.40 161.27

MONeural
(TS)

Regret 29.97 33.64 39.14 29.97 69.56 301.8 29.97 23.47 22.23
Time (s) 54.61 66.78 62.35 54.61 52.50 54.42 54.61 79.79 164.96

Table 2: Performance Comparison of the cosine reward function under Different Parameter Settings. We report the average cumulative regrets
for T = 3000 over three repetitive runs. We use K = 10, d = 10,m = 2 as the default setting, and only change the varying parameter for
each experiment.

U [0, 1]d and then normalized to satisfy ∥θ∗
i ∥ = 1, and

the noise is sampled as the same. We choose m = 3,
d = 20, and K = 20 at this time.

We conducted the experiments for T = 3000, and each
experiment was repeated 10 times. Each objective was es-
timated by a neural network with one hidden layer contain-
ing 100 neurons, and furthermore, we trained the networks
with Adam optimizer by the learning rate η = 0.005, and
with the step J = 1 each round. For the exploration factor,
γ in MONeural-UCB and ρ in MONeural-TS, we chose 0.1
in these experiments. The scalarization vectors are sampled
uniformly from the simplex. Detailed discussion on the hy-
perparameters can be found in the Appendix D. The iterative
graphs of the cumulative regret are shown in Figure 2, from
which we can observe that the proposed methods converge
after hundreds of rounds, while the linear method was per-
formed with linear regret.

Effects of the Parameters. We further tested the perfor-
mance of our algorithms with cosine reward functions under
varying parameters. As shown in Table 2, it demonstrates that
changes in K and m have minimal impact on regret values,
while variations in feature dimension d significantly influ-
ence the algorithm performance. This dimensional sensitivity
strongly aligns with our theoretical analysis, which predicts a
linear relationship between regret and feature dimensionality.
The running time of our algorithms is closely related to the
number of objectives m, yet even with five objectives, action
selection takes only 50ms.

6.2 MOO Cases

We repeat the experiments using three classical multi-
objective optimization (MOO) problems [Zhang et al., 2009;
Lin et al., 2022]. At each round, ten arms with the context
randomly sampled from the decision space are evaluated by
the Linear and our proposed methods. Based on hyperparam-
eter tuning, we train two-layer neural networks with hidden
layers M = 200. For neural bandits, we choose γ = 0.01
and ρ = 0.05 for the UCB and TS methods, respectively.
The per-instance regret results are shown in Figure 3. We can
observe that the proposed methods work pretty well on the
tested three cases, which demonstrates the ability to handle
the non-linear feedback function under the regret of squared
time horizon.

6.3 Real-world Dataset
We further empirically evaluate our methods in two real-
world public datasets in the multitask learning community,
i.e. multiMNIST [Sabour et al., 2017] and multiFashionM-
NIST [Lin et al., 2019]. To fit the classification tasks to the
MOMAB problems, we pair each input feature with the out-
put labels to form the contextual feature vector for each arm.
In addition to the correctly labeled arm, the other K− 1 arms
are randomly selected with the same input features and ran-
dom labels. The algorithm received a 1 reward if the cor-
rect arm was selected. The rewards for each objective are
shown in the Appendix D. Consistent with the previous find-
ing, using the universal approximator, performance is im-
proved compared to that using linear model.

7 Conclusions
In this paper, we studied the general case of contex-
tual multi-objective multi-armed bandit problems, where
the unknown rewards of each arm are modeled by neu-
ral networks. Based on two strategies to balance be-
tween exploration and exploitation, we proposed two al-
gorithms: MONeural-UCB and MONeural-TS. Given the
recent advances in generalization and optimization the-
orem of deep neural networks, we theoretically prove
that the MONeural-UCB method can run with regret less

than Õ

(√
md̃T

√
max

{
md̃,maxi∈[m] ∥hi∥H

})
, while

MONeural-TS can be run with the regret less than
Õ
(
d̃
√
Tm/p̃m

)
. Empirical results in synthetic and real-

world problems demonstrate the promising performance of
the proposed methods.

Limitation and future work. Modeling each objective
with a neural network is computationally expensive when
there is a large amount of objectives. In future work, we
may try to take advantage of the thoughts of Pareto set learn-
ing (PSL) [Lin et al., 2022] and combine it with the MONBs
smoothly.
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