
Problem-dependent Regret for Lexicographic Multi-Armed Bandits with
Adversarial Corruptions

Bo Xue1,2 , Xi Lin1,2 , Yuanyu Wan3 and Qingfu Zhang1,2,∗

1Department of Computer Science, City University of Hong Kong, Hong Kong, China
2The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

3School of Software Technology, Zhejiang University, Ningbo, China
{boxue4-c, xi.lin}@my.cityu.edu.hk, wanyy@zju.edu.cn, qingfu.zhang@cityu.edu.hk

Abstract
This paper studies lexicographic multi-armed ban-
dits (MAB), where after selecting an arm, the agent
observes a reward vector including multiple objec-
tives, each with a different level of importance. Al-
though previous literature has proposed the algo-
rithm for lexicographic MAB, their algorithm suf-
fers from several limitations: (1) it exhibits poor ad-
versarial robustness due to its reliance on stochas-
tic rewards, (2) its regret bound is suboptimal com-
pared to single-objective counterparts, and (3) the
regret bound does not adapt to specific problem
instances. To address these limitations, we study
lexicographic MAB with adversarial corruptions,
where an adversary might corrupt the stochastic re-
wards with a corruption budget of C. First, when
the value of C is known, we propose an algorithm
achieving a problem-dependent regret bound of
O
(∑

∆i(a)>0

(
log T
∆i(a) + C

))
for the i-th objective

(i ∈ [M ]), where ∆i(a) is the reward gap for arm a
on the i-th objective, andM is the number of objec-
tives. In the purely stochastic setting (C = 0), this
regret bound approaches optimality. Second, we
introduce another algorithm that does not require
value of C but incurs a less favorable regret bound
of O

(∑
∆i(a)>0

(
γT

∆i(a) + γT

))
for the i-th ob-

jective, where γT = O((log T )2 + KC(log T )2).
Finally, we conduct experiments on both synthetic
and real-world datasets to verify the effectiveness
of our algorithms.

1 Introduction
Multi-armed bandits (MAB) has emerged as a prominent
framework in the field of sequential decision-making [Rob-
bins, 1952], where at each round, an agent first chooses one
of K arms and then receives a reward related to the cho-
sen arm. The goal of the agent is to maximize the cumu-
lative rewards over T rounds. MAB has found applications
in various domains, including online advertising [Schwartz et

∗Qingfu Zhang is the corresponding author.

al., 2017], clinical trials [Villar et al., 2015], and resource
allocation [Khansa et al., 2021]. Despite its power, many
real-world applications encounter the trade-off between dif-
ferent objectives. For example, supply chain management
aims to maximize revenue while minimizing costs [Trisna
et al., 2016], and recommender systems strive to maximize
the user engagement while ensuring the fairness [Wang et al.,
2023]. These applications have motivated the development of
multi-objective bandits, where the observed reward is a vec-
tor containing multiple objectives [Hüyük and Tekin, 2021;
Groetzner and Werner, 2022; Xu and Klabjan, 2023; Cai et
al., 2023; Cheng et al., 2024; Xue et al., 2025].

Most research on multi-objective bandits employs Pareto
regret to evaluate algorithms, which assumes all objectives
carry equal importance [Turgay et al., 2018; Lu et al., 2019;
Cai et al., 2023]. However, some real-world applications re-
quire different levels of importance among objectives. For
instance, in radiation treatment for cancer patients, target cov-
erage takes precedence over proximity to organs at risk [Jee
et al., 2007]. Similarly, water resource planning prioritizes
objectives such as flood protection, irrigation supply short-
ages, and electricity generation [Weber et al., 2002]. More-
over, Theorem 4.1 in Xu and Klabjan [2023] states that Pareto
regret is lower than the individual regret of any objective.
Therefore, optimizing any single objective among the multi-
ple objectives achieves the optimal Pareto regret bound, while
the other objectives still suffer linear regret bounds of O(T ).

To address this issue, lexicographic order is proposed
[Ehrgott, 2005], which distinguishes objectives through their
importance. Precisely, in a lexicographic bandit problem with
M objectives, the i-th objective is more important than the j-
th objective if i < j and i, j ∈ [M ]1. As the most related
work, Hüyük and Tekin [2021] investigated multi-objective
multi-armed bandits (MOMAB) under lexicographic order
and defined a metric called priority-based regret. Precisely,
let I(·) be the indicator function, and µi(a) ∈ R be the ex-
pected reward of arm a ∈ [K] on the objective i ∈ [M ]. The
priority-based regret for the objective i ∈ [M ] is

R̂i(T ) =
T∑
t=1

∆i(at) ·I(µj(at) = µj(a∗), ∀j ∈ [i−1]), (1)

where ∆i(a) = µi(a∗)−µi(a) is the expected reward gap, at
1For any positive integer N , [N ] denotes the set {1, 2, . . . , N}.
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is the arm chosen at the t-th round, and a∗ is the lexicographic
optimal arm (which will be defined in Section 3). Based on
this metric, Hüyük and Tekin [2021] developed an algorithm
whose regret bound is Õ((KT )2/3).

Although this work [Hüyük and Tekin, 2021] establishes
a foundational framework for addressing the lexicographic
bandit problem, it has four limitations: (1) It assumes that re-
wards are stochastic, which may be violated in some practical
scenarios, such as click fraud in pay-per-click online adver-
tising [Wilbur and Zhu, 2009] and malicious reviews in rec-
ommendation systems [Lykouris et al., 2018]. (2) The regret
bound Õ((KT )2/3) is suboptimal, as the problem-dependent
lower bound and minimax lower bound for single-objective
MAB are Ω

(∑
∆(a)>0

log T
∆(a)

)
and Ω(

√
KT ), respectively

[Bubeck and Cesa-Bianchi, 2012]. (3) Its regret bound cannot
adapt to specific problem instances. (4) The priority-based re-
gret is inaccurate in certain cases. For example, if µ1(at) <
µ1(a∗), then I(µj(at) = µj(a∗), ∀j ∈ [i− 1]) = 0 for i ≥ 2.
Therefore, the instantaneous gap ∆i(at) for i ≥ 2 is ignored
because ∆i(at) · I(µj(at) = µj(a∗), ∀j ∈ [i− 1]) = 0.

To address these limitations, we study the lexicographic
MOMAB with adversarial corruptions, whose most rewards
are stochastic, but a small fraction can be contaminated by an
adversary [Lykouris et al., 2018]. With a budget of corrup-
tions C, our main contributions are summarized as follows:

• We adopt a more accurate metric to evaluate lexico-
graphic MAB algorithms, which is a natural extension of
the regret in single-objective bandits [Auer et al., 2002],
i.e.,

Ri(T ) =
T∑
t=1

∆i(at), i ∈ [M ]. (2)

• If C is known, we propose an algorithm that enjoys a re-
gret bound of O

(∑
∆i(a)>0

(
log T
∆i(a) + C

))
for the i-th

objective, i ∈ [M ]. In the stochastic setting (C = 0),
this regret bound becomes O

(∑
∆i(a)>0

log T
∆i(a)

)
, which

matches the lower regret bound of MAB [Bubeck and
Cesa-Bianchi, 2012] and improves upon the existing re-
gret bound Õ((KT )2/3) [Hüyük and Tekin, 2021].

• If C is unknown, we employ the multi-instance tech-
nique [Lykouris et al., 2018] to design a new algorithm
that has a regret bound ofO

(∑
∆i(a)>0

(
γT

∆i(a) + γT

))
for the i-th objective, where γT = O((log T )2 +
KC(log T )2). When C = 0, this regret bound
becomes O

(∑
∆i(a)>0

(
(log T )2

∆i(a) + (log T )2
))

, which
also improves the existing lexicographic bandit algo-
rithm [Hüyük and Tekin, 2021].

• We conduct two sets of experiments to validate our the-
oretical findings. The first set consists of synthetic ex-
periments, while the second utilizes a real-world dataset
related to COVID-19 vaccines. Results from both sets
of experiments demonstrate that our algorithms can ef-
fectively optimize multiple objectives simultaneously.

2 Related Work
In this section, we review the research on corruption-tolerant
bandits and multi-objective bandits.

2.1 Corruption-tolerant Bandits
Lykouris et al. [2018] first introduced this new bandit model
called MAB with adversarial corruptions, and proposed two
basic ideas for this model. If the budgetC is known, Lykouris
et al. [2018] utilized enlarged confidence intervals to achieve
a regret bound of O

(∑
∆(a)>0

log T+C
∆(a)

)
.2 If C is unknown,

Lykouris et al. [2018] proposed the multi-instance technique
which dynamically adapts to the corruptions and achieved
a regret bound of O

(∑
∆(a)>0

KC(log T )2+(log T )2

∆(a)

)
. Later,

Gupta et al. [2019] further improved this regret bound
to O

(
KC +

∑
∆(a)>0

log(T ) log(log T )
∆(a)

)
by randomly select-

ing arms from a specially designed distribution. Gupta et
al. [2019] also established a lower bound that exhibits a lin-
ear relationship with the budget C. Subsequent research
has advanced the corruption-tolerant MAB into various di-
rections, including stochastic linear bandits [He et al., 2022;
Ding et al., 2022], Lipschitz bandits [Kang et al., 2023],
graph bandits [Lu et al., 2021], combinatorial bandits [Bal-
asubramanian et al., 2024] and Gaussian bandits [Bogunovic
et al., 2020]. Beyond the budget-bounded setting, several
papers have focused on a similar scenario in which an ad-
versary attacks with a certain probability at each round, and
these attack values can be unbounded [Altschuler et al., 2019;
Guan et al., 2020; Mukherjee et al., 2021].

2.2 Multi-objective Bandits
Drugan and Nowe [2013] initially formalized the MOMAB
problem and proposed two algorithms that exhibit regret
bounds of O

(∑
∆(a)>0

(
log T
∆(a) + ∆(a)

))
for scalarized re-

gret and Pareto regret, respectively. Turgay et al. [2018]
devoted into the multi-objective contextual bandits and pro-
posed a zooming-based algorithm that achieves a Pareto re-
gret bound of Õ(T (dp+1)/(dp+2)), where dp is Pareto zoom-
ing dimension. Lu et al. [2019] explored the multi-objective
generalized linear bandits and provided a regret bound of
Õ(
√
T ). Chowdhury and Gopalan [2021] studied multi-

objective bandit learning from the perspective of nonpara-
metric Bayesian optimization. Another line of research is
the Pareto set identification, whose goal is to analyze the
cost of identifying all Pareto optimal arms [Auer et al., 2016;
Ararat and Tekin, 2023; Kone et al., 2023]. Tekin and Tur-
gay [2018] initially examined lexicographic contextual ban-
dits, establishing a regret bound of Õ(T (dc+2)/(dc+3)), where
dc is the dimension of context information. However, their
study was limited to scenarios with two objectives. Xue et
al. [2024] later extended the number of objectives beyond
two in the Lipschitz bandit setting, deriving a regret bound
of Õ(T (diz+1)/(diz+2)) for the i-th objective, where diz is the
zooming dimension and i ∈ [M ]. The most related work is

2For the single-objective setting, ∆1(a) is simplified as ∆(a).
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by Hüyük and Tekin [2021], which studied the lexicographic
MOMAB and achieved a regret bound of Õ((KT )2/3).

Existing algorithms for lexicographic bandits can only han-
dle stochastic rewards, which lacks robustness against adver-
sarial attacks. Meanwhile, their regret bounds fail to adapt
to specific problem instances. Therefore, we propose new
algorithms for lexicographic MOMAB with adversarial cor-
ruptions and establish problem-dependent regret bounds.

3 Preliminaries
This paper studies lexicographic MOMAB with adversarial
corruptions. Let M be the number of objectives and K be the
number of arms. At each round t = 1, 2, . . . , T , the formal
protocol between the agent and adversary is as follows:

1. The environment assigns each arm a ∈ [K] a stochas-
tic reward rt(a) = [r1

t (a), . . . , rMt (a)] ∈ RM , whose
expectation is µ(a) = [µ1(a), . . . , µM (a)]. For any ob-
jective i ∈ [M ] and any arm a ∈ [K], µi(a) is bounded
in [0, 1] and rit(a) satisfies the 1-sub-Gaussian property,
i.e.,

E
[
eα(rit(a)−µi(a))

]
≤ eα

2/2, ∀α ∈ R. (3)

2. The adversary observes the stochastic reward of any arm
a ∈ [K] and corrupts it to r̃t(a) = [r̃1

t (a), . . . , r̃Mt (a)] ,
where the corruptions are bounded, such that

|r̃it(a)− rit(a)| ≤ 1, ∀i ∈ [M ], a ∈ [K]. (4)

3. The agent chooses an arm at and then observes the cor-
rupted reward vector r̃t(at).

Following the previous studies on the corruption-tolerant
bandits [Lykouris et al., 2018; Gupta et al., 2019], we assume
the total corruptions of each objective are bounded by C, i.e.,

T∑
t=1

max
a∈[K]

|r̃it(a)− rit(a)| ≤ C, ∀i ∈ [M ]. (5)

Next, we introduce the lexicographic order so as to com-
pare different arms by their expected rewards.
Definition 1 (Lexicographic Order). Let u, v ∈ RM be two
vectors. u is said to lexicographically dominate v if and only
if there exists some i∗ ∈ [M ], such that ui = vi for any
i ∈ [i∗ − 1] and ui

∗
> vi

∗
.

Lexicographic order is a total order allowing the compar-
ison of any two vectors, thereby deciding the lexicographic
optimal arm.
Definition 2 (Lexicographic Optimal Arm). An arm a∗ is
lexicographic optimal if and only if its expected reward is not
lexicographically dominated by that of any other arms in [K].

Finally, we introduce a concept termed local trade-off,
which is similar to the established notion called global trade-
off [Miettinen, 1999, Definition 2.8.5].
Definition 3 (Local Trade-off). A positive real number λ0

is the local trade-off parameter of a MOMAB problem if and
only if it is the smallest λ > 0 that satisfies the condition: for
any i ≥ 2 and a ∈ [K],

µi(a)− µi(a∗) ≤ λ · max
j∈[i−1]

{µj(a∗)− µj(a)}. (6)

𝜇𝜇2

𝜇𝜇1

𝑂𝑂

𝜇𝜇(𝑎𝑎∗)

Pareto front

(a) Multiple Optimal Arms on 𝜇𝜇1
𝜇𝜇2

𝜇𝜇1

𝑂𝑂

𝜇𝜇(𝑎𝑎∗)

Pareto front

𝜇𝜇(𝑎𝑎1) 𝜇𝜇(𝑎𝑎2)
𝜇𝜇(𝑎𝑎3) 𝜇𝜇(𝑎𝑎4)⋯

(b) Single Optimal Arm on 𝜇𝜇1

Figure 1: (a) There exist multiple optimal arms for the first objec-
tive, thus a lexicographic bandit algorithm is necessary to identify
the lexicographic optimal arm a∗. (b) There exists only one optimal
arm for the first objective, thus running a single-objective bandit al-
gorithm on the first objective is sufficient to determine the arm a∗.
However, focusing on the first objective only cannot optimize the
second objective.

The trade-off parameter λ0 is a ratio indicating when tran-
sitioning from the lexicographic optimal arm a∗ to other
arms, how much the value of the i-th objective will increase
per unit decrease in the preceding i − 1 objectives. Due
to the inherent conflicts among different objectives, employ-
ing the information about trade-offs is common in multi-
objective optimization [Kaliszewski, 2000; Keeney, 2002;
Nowak and Trzaskalik, 2022].

4 Effective Scenarios of Lexicographic Bandit
Algorithms

Before introducing our algorithms, we present two typical
lexicographic bandit problems in Figure 1(a) and Figure 1(b),
highlighting scenarios where our algorithms are effective.

In Figure 1(a), multiple arms attain the maximum expected
reward on the first objective. Therefore, executing a single-
objective bandit algorithm based solely on the rewards of the
first objective cannot identify the lexicographic optimal arm
a∗, and taking a lexicographic bandit algorithm is necessary.

In contrast, Figure 1(b) depicts a scenario where only one
arm a∗ attains the maximum expected reward on the first ob-
jective. Here, identifying the optimal arm for the first objec-
tive is equivalent to identifying the lexicographic optimal arm
a∗. This raises a natural question:

Can a single-objective bandit algorithm replace lexico-
graphic bandit algorithms in the scenario of Figure 1(b)?

The answer is no. As depicted in Figure 1(b), apply-
ing a single-objective bandit algorithm, such as UCB [Auer,
2002], to the first objective yields a sequence of chosen
arms {a1, a2, . . . , at, . . .}. By the theoretical guarantee of
UCB, the sequence of expected rewards for the first objec-
tive, {µ1(a1), µ1(a2), . . . , µ1(at), . . .}, converges to the op-
timal expected reward µ1(a∗), ensuring a sublinear regret
bound for the first objective, as shown in Figure 1(b). How-
ever, the sequence of expected rewards for the second objec-
tive, {µ2(a1), µ2(a2), . . . , µ2(at), . . .}, may deviate signifi-
cantly from the optimal value µ2(a∗), potentially resulting
in linear regret for the second objective. Therefore, single-
objective algorithms cannot optimize multiple objectives si-
multaneously in the scenario like Figure 1(b), thus cannot re-
place the lexicographic bandit algorithms.
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Algorithm 1 Corruption-tolerant Multi-objective Bandits
with Known Budget (CMOB-KB)

Input: δ ∈ (0, 1), λ ≥ λ0

1: Initialize empirical mean rewards µ̂i(a) = 0, counters
n(a) = 0, and confidence termsw(a) = +∞ for i ∈ [M ]
and a ∈ [K]

2: Initialize exploration index s = 1 and arm set As = [K]
3: for t = 1, 2, . . . do
4: Invoke Algorithm 2 to select an arm, update the ex-

ploration index and candidate arm set: at, s,As =

AELO
(
s,As,

{
µ̂i(a), w(a)

}i∈[M ]

a∈As

)
5: Play the arm at and observe the reward vector r̃t(at)
6: Update the empirical rewards and counter by Eq. (8)
7: Update the confidence term by Eq. (9)
8: end for

5 Algorithms
In this section, we first propose a budget-dependent algo-
rithm, and then present a budget-free algorithm to remove the
requirement on the budget value C.

5.1 Budget-dependent Method: CMOB-KB
As a warm-up, we introduce a straightforward algorithm that
requires the value of budget C, called Corruption-tolerant
Multi-objective Bandits with Known Budget (CMOB-KB).

At the start, CMOB-KB initializes the empirical mean re-
wards µ̂i(a) and the counter n(a) for any objective i ∈ [M ]
and any arm a ∈ [K] as zero, where the counter is used to
track the number of times each arm is played. The confi-
dence term w(a) for any arm a ∈ [K] is initialized as infin-
ity. In addition, CMOB-KB initializes an exploration index
s = 1 and a candidate arm set As = [K]. With these ini-
tializations, CMOB-KB is ready to start decision-making. To
balance the trade-off across different objectives, we design a
novel decision-making method called Arm Elimination under
Lexicographic Ordering (AELO), as outlined in Algorithm 2.

AELO is a repeated-until loop which iteratively elimi-
nates arms in As until an arm is chosen. If there is an arm
a ∈ As whose confidence term w(a) is greater than 2−s,
AELO chooses the arm with the fewest number of plays, i.e.,
at = argmina∈As

n(a), and terminates the loop. If no arm
satisfies this condition, AELO sequentially eliminates arms
from the first objective to the last objective so as to balance
the exploration and exploitation across different objectives.

LetA0
s = As be the initialized candidate arms. For the ob-

jective i ∈ [M ], AELO first selects the arm âit fromAi−1
s that

maximizes the upper confidence bound of this objective, i.e.,
âit = argmaxa∈Ai−1

s
µ̂i(a) + w(a). Then, AELO keeps the

arms whose upper confidence bound is greater than or equal
to the upper confidence bound of âit minus a term depending
on the objective order and the exploration index, i.e.,

Ais = {a ∈ Ai−1
s |µ̂i(a) + w(a) ≥ µ̂i(âit) + w(âit)

− (2 + 4λ+ . . .+ 4λi−1) · 2−s}.
(7)

This step eliminates arms that are less promising. After elim-
inating arms on the last objective M , AELO sets As+1 as

Algorithm 2 AELO

Input: s,As,
{
µ̂i(a), w(a)

}i∈[M ]

a∈As

1: repeat
2: if w(a) > 2−s for some a ∈ As then
3: Choose the arm at = argmina∈As

n(a)
4: else
5: Initialize the arm set A0

s = As
6: for i = 1, 2, . . . ,M do
7: âit = argmaxa∈Ai−1

s
µ̂i(a) + w(a)

8: Ais = {a ∈ Ai−1
s |µ̂i(a) + w(a) ≥ µ̂i(âit) +

w(âit)− (2 + 4λ+ . . .+ 4λi−1) · 2−s}
9: end for

10: Update As+1 = AMs and s = s+ 1
11: end if
12: until an arm at is chosen
13: Return at, s and As

AMs and s as s + 1. AELO repeats the above steps until an
arm is chosen. Finally, AELO returns the chosen arm at, the
updated index s and arm set As.

Once CMOB-KB obtains the arm returned by AELO, it
plays at and receives the reward r̃t(at). Then, CMOB-KB
updates the empirical mean rewards of all objectives and the
counter n(at), i.e.,

µ̂i(at) =
n(at) · µ̂i(at) + r̃it(at)

n(at) + 1
, n(at) = n(at) + 1. (8)

Finally, CMOB-KB computes w(at) based on the updated
n(at), i.e.,

w(at) =

√
α(at)

n(at)
+

C

n(at)
(9)

where α(at) = 4 log(4MKn(at)/δ). After all these updates,
CMOB-KB has finished the current trial and is prepared to
make the next decision.

We provide the following theorem for CMOB-KB.

Theorem 1. Suppose (3), (4) and (5) hold. If CMOB-KB is
run with λ ≥ λ0, then with probability at least 1− δ, for any
objective i ∈ [M ], its regret satisfies

Ri(T ) ≤
∑

∆i(a)>0

128αT (Λi(λ))2

∆i(a)
+ 32Λi(λ)C

where αT = 4 ln(4MKT/δ) and Λi(λ) = 1+λ+. . .+λi−1.

Remark 1. Theorem 1 states that CMOB-KB achieves a re-
gret bound of O

(∑
∆i(a)>0

(
αT (Λi(λ))2

∆i(a) + Λi(λ)C
))

. No-

tably, Λ1(λ) = 1, thus the regret bound of the first objective
isO

(∑
∆1(a)>0

(
αT

∆1(a) + C
))

, which aligns with the regret
bound of the single-objective corruption-tolerant bandit algo-
rithm [Lykouris et al., 2018]. Therefore, CMOB-KB does
not degrade the performance of the most important objective
(i = 1) when optimizing multiple objectives simultaneously.
Although subsequent objectives may have higher regrets, it is
acceptable for lower-priority objectives to experience greater
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Algorithm 3 Corruption-tolerant multi-objective Bandits
with Unknown Budget (CMOB-UB)

Input: δ ∈ (0, 1), λ ≥ λ0, T ∈ N+

1: Compute instance number L = dlog2 T e
2: Initialize empirical mean rewards µ̂i`(a) = 0, counters
n`(a) = 0, and confidence terms w`(a) = +∞ for i ∈
[M ], a ∈ [K] and ` ∈ [L]

3: Initialize exploration index s` = 1 and candidate arm set
A` = [K] for ` ∈ [L]

4: for t = 1, 2, . . . , T do
5: Sample instance `t ∈ [L] with probability 2−`t , with

the remaining probability sampling `t = 1
6: if A`t 6= ∅ then
7: Invoke Algorithm 2 to select an arm, update explo-

ration index and candidate arm set: at, s`t ,As`t =

AELO
(
s`t ,As`t ,

{
µ̂i`t(a), w`t(a)

}i∈[M ]

a∈As`t

)
8: Update the arm set for previous instances: for ` <

`t, As` = As` ∩ As`t
9: Play the arm at and observe the rewards r̃t(at)

10: Update empirical rewards and counter by Eq. (10)
11: Update the confidence term by Eq. (11)
12: else
13: Find the minimum instance `′t ≥ `t such that A`′t 6=

∅ and randomly play an arm from A`′t
14: end if
15: end for

regrets. This effect is typically modest given that most multi-
objective problems involve two or three objectives [Deb and
Jain, 2014; Li et al., 2015].

Remark 2. In the setting of stochastic rewards (C = 0),
the above regret bound reduces toO

(∑
∆i(a)>0

αT (Λi(λ))2

∆i(a)

)
,

which matches the problem-dependent lower bound of single-
objective bandits in terms of ∆i(a) [Bubeck and Cesa-
Bianchi, 2012]. This is a considerable improvement since
the existing regret bound of lexicographic MOMAB work is
Õ((KT )2/3) [Hüyük and Tekin, 2021], which deviates from
the minimax regret bound Õ(

√
KT ) of the single-objective

bandit algorithm [Bubeck and Cesa-Bianchi, 2012]. Further-
more, we adopt the general regret (2) as the metric, which
is more accurate than the priority-based regret (1) used in
[Hüyük and Tekin, 2021], as discussed in Section 1.

Remark 3. Regarding the budget value C, Gupta et
al. [2019] established a budget-dependent lower bound Ω(C),
which indicates that our regret bound is optimal concerning
the budget C. Meanwhile, CMOB-KB is an anytime algo-
rithm which does not take T as input,distinguishing it from
existing methods [Lykouris et al., 2018; Gupta et al., 2019].

5.2 Budget-free Method: CMOB-UB
To remove the dependence on C, a commonly used ap-
proach is the multi-instance technique [Lykouris et al., 2018;
Kang et al., 2023], which involves constructing multiple
corruption-tolerant instances like CMOB-KB first, and then

randomly picking an instance to run in each round. Since
each instance has a different tolerance level against corrup-
tion and the more resilient one is less likely to be chosen, this
approach enables automatic adaptation to the unknown value
C. Leveraging this technique, we design a budget-free algo-
rithm called Corruption-tolerant Multi-objective Bandits with
Unknown Budget (CMOB-UB).

At the start, CMOB-UB calculates L = dlog2 T e, which
is the number of instances. Afterward, CMOB-UB initializes
the empirical mean rewards µ̂i`(a), the counters n`(a), and the
confidence terms w`(a) for each objective i ∈ [M ], arm a ∈
[K], and instance ` ∈ [L]. Meanwhile, CMOB-UB initializes
the exploration index s` = 1 and the candidate arm set A` =
[K] for each instance ` ∈ [L].

With all these preparations, CMOB-UB proceeds to the
decision-making process from t = 1 to T . In the t-th round,
CMOB-UB first samples an instance `t with probability 2−`t

for `t ∈ [L], with the remaining probability sampling `t = 1.
If the candidate arm set A`t is not empty, CMOB-UB em-
ploys AELO (Algorithm 2) to select an arm at. The inputs for
AELO are the recorded information of the sampled instance
`t, such as the exploration index s`t , the candidate arm set
As`t , the empirical rewards µ̂i`t(a), and the confidence terms
w`t(a) for all a ∈ A`t .

Once an arm is selected, CMOB-UB eliminates arms of
previous instances by intersecting the candidate arm sets A`
and A`t for all ` ≤ `t. This step ensures that the candi-
date arms from previous instances are contained in subse-
quent ones, such that A1 ⊆ A2 · · · ⊆ AL. CMOB-UB then
plays the chosen arm at and receives the corresponding re-
wards [r̃1

t (at), r̃
2
t (at), . . . , r̃

m
t (at)]. It updates the empirical

mean rewards and the counter as follows:

µ̂i`t(at) =
n`t(at) · µ̂i`t(at) + r̃it(at)

n`t(at) + 1
, n`t(at) = n`t(at)+1.

(10)
Finally, CMOB-UB updates the confidence term w`t(at),
such that,

w`t(at) =

√
α`t(at)

n`t(at)
+

ln(9MT/δ)

n`t(at)
(11)

where α`t(at) = 4 ln(4MKn`t(at)/δ).
Otherwise, if the candidate arm set A`t is empty, CMOB-

UB finds the minimum instance `′t ≥ `t such that A`′t 6= ∅
and randomly plays an arm from A`′t . In this case, CMOB-
UB does not update the estimated rewards and confidence
terms, thus the corruptions does not attack the parameter es-
timation of CMOB-UB.

We provide the following regret bound for CMOB-UB.
Theorem 2. Suppose (3), (4) and (5) hold. If CMOB-UB is
run with λ ≥ λ0, then with probability at least 1−5δ, for any
objective i ∈ [M ], its regret satisfies

Ri(T ) ≤
∑

∆i(a)>0

αTβT

(
128(Λi(λ))2

∆i(a)
+ 16Λi(λ)

)
where Λi(λ) = 1 + λ + . . . + λi−1, αT = 4 ln(4MKT/δ)
and βT = 4KC ln(T/δ) + 2 log2 T .
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Figure 3: Comparison of our algorithms versus PF-LEX and single-objective algorithms: Synthetic Dataset and C = 300

Remark 4. Theorem 2 states that CMOB-UB achieves
a regret bound of O

(∑
∆i(a)>0 γT

(
(Λi(λ))2

∆i(a) + Λi(λ)
))

,
where γT = O ((KC log T + log T ) log(MKT )). Com-
pared to CMOB-KB, CMOB-UB removes the dependence on
the prior knowledge C at the cost of O(K log T ) increase
in the regret bound. Compared to the budget-free method
for single-objective bandits [Lykouris et al., 2018], CMOB-
UB achieves comparable regret bounds in the leading terms
∆i(a) and T for multiple objectives simultaneously.

Remark 5. In the case of C = 0, the regret bound in
Theorem 2 is O

(∑
∆i(a)>0(log(T ))2

(
(Λi(λ))2

∆i(a) + Λi(λ)
))

,
which outperforms the existing lexicographic MOMAB re-
gret bound of Õ((KT )2/3) [Hüyük and Tekin, 2021]. In
cases where C is non-zero, the regret bound of CMOB-UB is
linear in terms of C, which matches the existing lower bound
of corruption-tolerant bandits [Gupta et al., 2019].

6 Experiments
In this section, we conduct experiments on synthetic and real-
world datasets to verify the effectiveness of our algorithms.

To demonstrate the robustness of our algorithms, we com-
pare them with PF-LEX, a lexicographic MOMAB method
for stochastic rewards [Hüyük and Tekin, 2021], and two
single-objective corruption-tolerant MAB methods [Lykouris
et al., 2018]. Specifically, we refer to the first and third meth-
ods from Lykouris et al. [Lykouris et al., 2018] as CSOB-
KB and CSOB-UB, respectively. CSOB-KB takes the prior
knowledge of the budget value C as input, while CSOB-UB
removes this dependence.

6.1 Synthetic Dataset
In the synthetic dataset, the number of arms is K = 20, and
the number of objectives is M = 3. We evaluate two levels
of corruptions: C = 0 for the non-corrupted case and C =
300 for the corrupted case. Each algorithm is executed 10
times, and we present the average regrets for the first and third
objectives. More details are provided in the appendix.

Figure 2 illustrates the non-corrupted case (C = 0). In Fig-
ure 2(a), we display the performance of PF-LEX and CMOB-
KB. It can be observed that CMOB-KB outperforms PF-LEX
in both the first and third objectives, which aligns with the
theoretical guarantees that CMOB-KB exhibits a lower regret
bound than PF-LEX. The regret curve of CMOB-KB eventu-
ally flattens, indicating that it successfully identifies the opti-
mal arm. Moving to Figure 2(b), we present the performance
of the known budget methods, CMOB-KB and CSOB-KB.
Although CMOB-KB and CSOB-KB achieve comparable
performance on the first objective, CMOB-KB outperforms
CSOB-KB on the third objective, showcasing the effective-
ness of CMOB-KB for optimizing multiple objectives. Fig-
ure 2(c) presents the results of the unknown budget methods.
Similar to Figure 2(b), the multi-objective method CMOB-
UB achieves comparable performance to the single-objective
algorithm CSOB-UB on the first objective but outperforms
CSOB-UB on the third objective.

Figure 3 presents the results for the corrupted case (C =
300), with (a), (b), and (c) displaying the multi-objective
methods, known budget methods, and unknown budget meth-
ods, respectively. The attackers corrupt the rewards and in-
crease the cost of identifying the optimal arm, resulting in
the time horizons in Figure 3(a) and Figure 3(b) are 10 times
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Figure 5: Comparison of our algorithms versus PF-LEX and single-objective algorithms: Real-world Dataset and C = 300

longer than the zero-corruption case. The curves of CMOB-
KB and CMOB-UB eventually converge for both the first and
third objectives, showcasing their ability to identify the op-
timal arm under adversarial attacks and their ability to op-
timize multiple objectives simultaneously. In contrast, PF-
LEX cannot handle corruptions, while CSOB-KB and CSOB-
UB yield linear regret bounds for the third objective.

6.2 Real-world Dataset
Building upon the prior research [Kone et al., 2023], we as-
sess the performance of our algorithms using a real-world
dataset obtained from Covid-19 vaccines [Munro et al.,
2021], where K = 20 and M = 3. We set the corruption
budget C to 0 and 300, respectively. Each algorithm is exe-
cuted 10 times, and the average regrets are reported.

Figure 4 illustrates the non-corrupted case (C = 0). In
Figure 4(a), the performance of PF-LEX and CMOB-KB re-
veals that CMOB-KB outperforms PF-LEX in both the first
and third objectives. Figures 4(b) and 4(c) present the per-
formance of methods with known and unknown budgets, re-
spectively. Both of our algorithms, CMOB-KB and CMOB-
UB, demonstrate sublinear regret curves in the the first and
third objectives, consistent with our theoretical guarantees.
Interestingly, unlike in the synthetic experiments, the single-
objective algorithms CSOB-KB and CSOB-UB also exhibit
sublinear regret curves for the third objective. This is be-
cause, in the COV-BOOST dataset, the lexicographic optimal
arm can be identified solely based on the first objective. Thus,
identifying the optimal arm for the first objective is equivalent
to identifying the lexicographic optimal arm in this dataset.

Figure 5 presents the results for the corrupted case (C =

300). In comparison to the results in Figure 4, all algorithms
exhibit increased regrets due to the attacker corrupts the re-
wards. Nonetheless, the curves of CMOB-KB and CMOB-
UB eventually converge for both the first and third objectives,
demonstrating their robustness in identifying the optimal arm.

7 Conclusion and Future Work
We developed two algorithms for lexicographic MAB with
adversarial corruptions, enabling the optimization of multiple
objectives under attacks. The first algorithm, CMOB-KB, has
a regret bound ofO

(∑
∆i(a)>0

(
log(T )(Λi(λ))2

∆i(a) + Λi(λ)C
))

for any objective i ∈ [M ], aligning with the single-objective
bandit algorithm in terms of ∆i(a), T and C [Lykouris et al.,
2018]. In the stochastic reward setting, this regret bound re-
duces to O

(∑
∆i(a)>0

log(T )(Λi(λ))2

∆i(a)

)
, which improves the

existing regret bound Õ((KT )2/3) [Hüyük and Tekin, 2021].
Although CMOB-KB is simple, its takes the corruption bud-
get C as input. Therefore, we propose the second algorithm,
CMOB-UB, which removes the dependence on C and enjoys
a regret bound of O

(∑
∆i(a)>0 γT

(
(Λi(λ))2

∆i(a) + Λi(λ)
))

,

where γT = O
(
KC(log T )2 + (log T )2

)
. Finally, we con-

ducted experiments on both synthetic and real-world datasets,
verifying the effectiveness of our algorithms in optimizing
multiple objectives under corruptions.

One limitation of our algorithms is their reliance on the
input value λ ≥ λ0, which may restrict their applicability.
Hence, developing an algorithm that does not require prior
knowledge of λ0 would be a valuable advancement.
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