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Abstract. Fine-grained search task such as retrieving subordinate cat-
egories of birds, dogs or cars, has been an important but challenging
problem in computer vision. Although many effective fine-grained search
methods were developed, with the amount of data increasing, previous
methods fail to handle the explosive fine-grained data with low storage
cost and fast query speed. On the other side, since hashing sheds its light
in large-scale image search for dramatically reducing the storage cost and
achieving a constant or sub-linear time complexity, we leverage the power
of hashing techniques to tackle this valuable yet challenging vision task,
termed as fine-grained hashing in this paper. Specifically, our proposed
method consists of two crucial modules, i.e., the bilinear feature learn-
ing and the binary hash code learning. While the former encodes both
local and global discriminative information of a fine-grained image, the
latter drives the whole network to learn the final binary hash code to
present that fine-grained image. Furthermore, we also introduce a novel
multi-task hash training strategy, which can learn hash codes of differ-
ent lengths simultaneously. It not only accelerates training procedures,
but also significantly improves the fine-grained search accuracy. By con-
ducting comprehensive experiments on diverse fine-grained datasets, we
validate that the proposed method achieves superior performance over
the competing baselines.

Keywords: Fine-grained image retrieval - Deep hashing - Multi-task
learning - Large-scale methods

1 Introduction

As a fundamental and challenging problem in computer vision, fine-grained
image analysis (FGIA) [26] has been an active research area for several decades.

Y. Wang—Is a student.

© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 432-444, 2020.
https://doi.org/10.1007/978-3-030-60639-8_36


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60639-8_36&domain=pdf
http://orcid.org/0000-0003-4255-9104
http://orcid.org/0000-0002-8200-1845
http://orcid.org/0000-0002-4724-6310
http://orcid.org/0000-0002-5138-3182
https://doi.org/10.1007/978-3-030-60639-8_36

Piecewise Hashing 433

Database Code

<& o A o
hey , [ofxfol1] [ofo]a ] [+[xo]] [x]t ofo]
o[ t]t[i] [io[t]1] []1]1]o] [1]o]1]o

[ A ¢}

Og | P

Query

Fig. 1. An example of the fine-grained hashing problem. Its goal is to retrieve images
belonging to multiple subordinate categories of a super-category (i.e., birds). Each fine-
grained image will be mapped into a binary code by a hashing function h(-). We return
the images which are in the same variety as the query image since they have smaller
hamming distance d. Here, different shapes of markers represent different subordinate
categories.

One of the central tasks in FGIA is fine-grained image search [25, 28], whose goal
is to retrieve images belonging to multiple subordinate categories of a super-
category (e.g., different species of birds, different models of cars, or different
kinds of clothes) and then return the images which are in the same variety as
the query image, cf. Fig. 1. Due to small inter-class variations and large intra-
class variations caused by the fine-grained nature, it is desirable to capture the
discriminative parts of these fine-grained objects to form a powerful image rep-
resentation.

During the booming of deep learning, recent years have witnessed effective
progress of fine-grained search using deep learning techniques. Some trials [25]
employed the pre-trained CNN models to unsupervisedly locate fine-grained
objects and then obtain the deep features for image search. Later, to break
through the limitation of unsupervised fine-grained search by pre-trained models,
some works [29,30] tended to discovery novel loss functions under the supervised
metric learning paradigm. Although these previous methods obtain good image
search accuracy, they still cannot handle the large-scale fine-grained data with
low storage cost and fast query speed, especially for the significant increment
of data amount in the deep learning era. Moreover, with the rapidly explosive
growth of vision data, more and more large-scale fine-grained datasets [3,8,9,24]
are proposed recently. In consequence, the demand of handling large-scale data
for fine-grained search methods has increased dramatically.

To deal with the large-scale data amount challenge, in machine learning,
approximate nearest neighbor (ANN) search [1,2] has attracted much attention
in recent years. Among ANN search methods, hashing [6,16,27] has been an
active and representative subarea, which is able to map the data points to binary
codes with hash functions by preserving the similarity in the original space of
the data points. Thanks to the binary hash code representation, the storage cost
for the large-scale data can be drastically reduced, and also the time complexity
can be constant or sub-linear.
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Therefore, in this paper, to alleviate the large-scale fine-grained search prob-
lem, we investigate a novel problem, i.e., fine-grained hashing, as a step towards
efficient and effective large-scale fine-grained image search. To realize fine-grained
hashing, we propose an end-to-end trainable network which is inspired by a state-
of-the-art fine-grained recognition backbone model, i.e., bilinear pooling [14] and
is also tailored for the fine-grained nature. Specifically, as shown in Fig. 2, our
proposed method consists of a bilinear feature learning module and a hash code
learning module. The former can encode the discriminative information of a fine-
grained image by utilizing both global and local streams into the intermediate
feature vector, while the latter plays the role to drive the whole network training
and obtain the final binary hash codes.

The key novelty of our method is the “piecewise” and “synergistic” proposals.
First, based on the outer product operation in bilinear pooling [14], the obtained
feature can be viewed as a set of sub-vectors, and thus, each of which implicitly
attends to one part of the image. We perform the part-level local stream mech-
anism upon these part-level sub-vectors “piece by piece” (“piecewise” proposal)
to capture the discriminative cues for effectively representing fine-grained parts
(e.g., “tufted heads”, “red-yellow stripe”), which favors the fine-grained nature.
Additionally, a parallel global stream is also designed to obtain the global-level
image feature. By aggregating both local (part-level) and global (object-level)
information, the final image representation can be fed into the hash code learning
module. Second, in order to accelerate the training process, we simultaneously
train hash functions of different lengths in a novel multi-task hash training frame-
work. Hash functions of different lengths share the convolutional layers with each
other to learn feature representations (the “synergistic” proposal), while saving
70% training and inference time (with four functions) both theoretically and
practically.

Empirical results on five fine-grained datasets, i.e., CUB [21], Aircraft [17],
NABirds [8], VegFru [9], and Food101 [3] show that our piecewise hashing
method significantly outperforms competing baselines, including the deep or non-
deep hashing state-of-the-arts. Meanwhile, we perform our proposed method on
a popular generic dataset, i.e., CIFAR-10 [11], to demonstrate that our method
is able to achieve the best search accuracy when facing the generic images.

The main contributions of this paper are summarized as:

— We study the practical and challenging fine-grained hashing problem and
propose an end-to-end trainable network with a novel multi-task hash training
strategy to deal with the large-scale fine-grained search problem.

— We devise a novel piecewise hashing method consisting a bilinear feature
learning module and a hash code learning module. The former resorts to the
special structure of the bilinear CNN features to learn discriminative image
features by leveraging both the global and local streams, while the latter
drives the whole network training and returns the final fine-grained hash
codes. Besides, the proposed multi-task strategy improves the efficiency and
accuracy by synergistically learning the common layers across hash functions
of different lengths.
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— We conduct experiments on five fine-grained datasets and one generic dataset.
Empirical results show that our proposed network outperforms previous hash-
ing methods for both fine-grained images and generic images.

2 Related Work

2.1 Fine-Grained Image Search

Fine-grained image search has attracted increasing research attention in recent
years, where the instances are within a subordinate category and different in
slight patterns. In the literature, [28] is the first attempt to use handcraft fea-
tures for fine-grained image search. Inspired by the power of deep learning, some
unsupervised and supervised deep fine-grained image search methods have been
proposed. Selective convolutional descriptor aggregation (SCDA) [25] is the first
work on deep fine-grained image search, which directly discovers the discrimina-
tive parts in the images unsupervisedly. [29] defines the fine-grained search as a
deep metric learning problem and tries to learn discriminative representations by
designing specific loss functions. At the same time, with the rapid growth of fine-
grained visual data, more and more large-scale fine-grained datasets have been
proposed containing abundant labeled images, to name a few, RPC' [24], Cars [5],
DA-Retail [23] and NABirds [8], facilitating further research. Nevertheless, these
previous fine-grained search work cannot handle large-scale fine-grained data, as
they represented the images with high-dimensional real-valued vectors.

2.2 Hashing

Hashing is a widely used method for ANN search in large scale image retrieval
with encouraging efficiency in both speed and storage. Existing hashing meth-
ods can be roughly categorized into unsupervised and supervised hashing. Unsu-
pervised hashing methods [18] learn hash functions from unlabeled data, e.g.,
LSH [6], SH [27] and ITQ [7]. Supervised hashing methods [22] attempt to
leverage supervised information (e.g., similarity matrix or label information) to
improve the quality of hash codes, e.g., KSH [16] and SDH [19]. Inspired by pow-
erful feature representations learning with deep neural networks [20], the deep
supervised hashing [10] adopting deep learning to generate high-level seman-
tic features has been proposed. Deep Pairwise-Supervised Hashing (DPSH) [13]
preserves relative similarity between image triplets straightly by integrating fea-
ture learning and hash functions in an end-to-end manner. Further, HashNet [4]
tackles the data imbalance problem between similar and dissimilar pairs and alle-
viates this drawback by adjusting the weights of similar pairs. To additionally
accelerate the training procedure, several asymmetric deep hashing methods are
proposed, i.e., Asymmetric Deep Supervised Hashing (ADSH) [10], which only
learns the hash function for query points to alleviate time-consuming. However,
previous hash methods were designed for generic images, which were not capable
for fine-grained images search.
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Fig. 2. Overview structure of our proposed piecewise hashing, which consists of two
main modules, i.e., bilinear representation learning and hash code learning. For bilin-
ear representation learning, we develop both global (object-level) and local (part-level)
stream to discover discriminative information for fine-grained objects by leveraging the
bilinear features tailored for fine-grained images. Specifically, for better capturing dif-
ferent but subtle part features, we perform the part-level attention on the local stream.
For hash code learning, three loss functions corresponding to three hash learning prin-
ciples are employed, and the network can be trained in an end-to-end fashion with only
image-level supervisions.

3 Proposed Method

In this section, we elaborately introduce our piecewise hashing method. Besides,
for improving the efficiency, we also propose a simple yet effective multi-task
training strategy to jointly learn hash functions of different code-lengths while
sharing the convolutional layers of the bilinear representation learning module.

Vectors and scalars are bold lower case italic letters and lower case italic
letters, such as a and c¢. The i-th element of a vector o and the ¢, j-th element
of a matrix S are represented as a; and S; ;, while the i-th column and j-th row
of a matrix S are presented as S, ; and S; .. Assume that we have m training data
points and n database points denoted as X = {xi}:il and Y = {yj }?:1. The
pairwise supervised information is denoted as S € {—1,+1}™*™ in training.
If point x* and point y’ are similar, S;; = +1, otherwise S;; = —1. Under
this condition, the goal of supervised hashing is to learn binary hash codes
code € {—1,+1}¢ for each point, and its corresponding hashing function A(-; ©),
where ¢ is the target length of binary code. Additionally, we use U = {ui}:n:l €
{-1,4+1}™*¢ and V = {vj};l:1 € {—1,+1}"*¢ to denote the learned binary
hash codes for training points and database points. The hash codes have to
preserve the similarity S between each point, which means the Hamming distance
between u’ and v/ should be as small as possible if S;; = +1.

3.1 Our Piecewise Hashing

Our model is shown in Fig. 2, which contains two modules: the bilinear repre-
sentation learning module and the hash-code learning module. We will elaborate
them as follows.
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Bilinear Representation Learning Module. In this part, we introduce our
network architecture in detail. For clarity, all the equations take one data point
x' as input.

Bilinear pooling (BCNN) [14] is an effective architecture tailored for the
fine-grained task. BCNN represents an image as an outer product of features
derived from two CNNs and discovers localized feature interactions. Inspired
by BCNN, we acquire bilinear representations and further generate hash codes
based on them. Specifically, we assume the outputs of two CNNs in BCNN are
re-organized into fa(x’) € RP*E and fp(x') € RP*L where D denotes the
dimension of the outputs and L denotes the spatial locations. Then, we define
the bilinear feature at location [ as:

bilinear(l, X%, fa, fz) = fa(l,x") fa(l,x)". (1)

The sum pooling aggregates the bilinear combination of features across all
locations in the image to obtain the global bilinear representation B* € RP*P
as follows:

. L i
B' = 21:1 bilinear(l,x’, fa, fB) - (2)

After obtaining the bilinear representation B?, the global stream and the local
stream are paralleled to derive outputs. In the global stream, the D?-dimension
bilinear representation B* is mapped to a c-dimension binary-like output. A
straightforward solution to realize this mapping is employing a multi-layer per-
ception (MLP) m(-). Therefore, we derive the global (object-level) binary-like
output via an MLP m9(-) : RP? _ R® as:

hg(x") = m? (vec(B")), 3)

where vec(-) vectorizes a D x D matrix to a D? x 1 vector.

The key novelty of our method is “piecewise” in the local stream. Based on
the outer product operation above, the bilinear representations can be viewed as
a set of sub-vectors (pieces), and thus, each of which implicitly attends to a highly
localized image feature (e.g., “tufted heads” and “red-yellow stripe”). Hence, in
the local stream, we apply the part-level attention (“piecewise”) to emphasize
the discriminative pieces and understate the pointless pieces over the bilinear
representation. Specifically, we locally re-organize the bilinear representation B®
by column and map each column to a local binary-like output via an MLP.
Then we derive the local (part-level) bilinear binary-like output from the convex
combination of local binary-like outputs for each column as follows:

i : i b 1 pi
hi(x') = Attention(a, B*) = Zd:l aamg(B; 4)

s.t. ZdD:l Oq = 1,

where a € RP*! is a learnable parameter, and m/(-) : RP? — R represents the
MLP for the d-th column.

(4)
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The overall binary-like output hg, ft(xi; ©) is also the convex combination of
the global bilinear binary-like output h,(x*) and the local bilinear binary-like
output h;(x?). Discrete hash codes h(x;; ©) are derived by employing sign(-) on
the overall binary-like output as follows:

h(xi; ©) = sign(hsofi(x'; ©)) = sign(Bhy(x') + (1 — )l (x"))
st.0<B<1,

()

where (3 is a learnable parameter, and © is the parameters of the whole network
including o and 3.

Hash-Code Learning Module. In this section, we design our objective func-
tion by three following principles including: preserving the similarity of data
points in the original space, distributing the codes to uniformly fulfill the code
space, and generating compact binary codes. In total, these principles correspond
to three loss functions to drive the training procedure of the whole network.

To preserve the similarity S during the training procedure, the previous
work [10,15] achieves it by minimizing the ¢5 loss between similarity S;; and
inner product of query-database binary code pairs u*v’/ . As all the hash codes
are discrete, it is hard to complete the training of hash functions. Previous works
always employ discrete function sign(-) to calculate the hash codes u; and utilize
sigmoid(-) or tanh(-) functions to approximate sign(-). The common similarity
loss they minimize is as:

Js0 = Zi 1 Z [u'v? T — Sy
= 21 ) Z || sign(hsope(x50))vI T — Sy (6)
NZi 12 | tanh(hgop (x5 O)VIT — Sy |% .

Nevertheless, employing such non-linear functions would inevitably slow
down or even affect the convergence of the network [12]. To ease such a problem,
we directly optimize the real-valued network outputs instead of the approxima-
tion of u;, and impose a regularizer, i.e., the quantization loss Jg, on the real-
valued network outputs to approach the desired discrete values. Particularly, we
present the Jg and the regularizer Jg as:

JS —ZL 1 Z Hhsoft X @)Vj—r — CSZ]H2 (7)
Jq :Zizl ||U. - hsoft(x 7@)H2 . (8)

One of the advantages of hash is storage efficiency. This brings another goal
to accomplish, that is, hash-codes points should uniformly fulfill the 2¢ code
space. Hence, for fully utilizing each bit of hash codes, we set a term Jp to make
each bit of the hash codes be balanced on all the points. Ideally, if we sum up
all the hash-codes, the results should be 0. This term can be presented as:

o= 5[5 o [ ] o
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The final objective function we minimize is as follows:

minJ =Jg + AJg + uJp
VvV, (10)
st Ve {-1,+1}"7°,

where A and p are hyper-parameters, which are set to 200 and 0.1 in all the
experiments.

3.2 Multi-task Hash Training Strategy

The another key novelty of our method is the “synergistic” proposal. Multi-task
hash training is a simple but effective training strategy. In the previous deep
hashing work [4,10], though the convolutional layers can be shared, they still
separately train models of different code-lengths, while in shallow hash meth-
ods [6,16], they usually utilize the same features to train several hash functions
of different lengths.

To reduce the training time and the redundancy among different hash func-
tions, we propose a multi-task hash training strategy enabling us to learn hash
functions of different code-lengths simultaneously. We split the network into the
convolutional layers, and the non-convolutional layers, ¢.e., the global and local
stream, which are directly related to the code-length shown in Fig. 2. Specifi-
cally, hash functions of different code-lengths contain the non-convolutional lay-
ers, while sharing the convolutional layers with each other (“synergistic”). When
we learn four hash functions of 12 bits, 24 bits, 32 bits, and 48 bits concurrently,
the corresponding objective function becomes as:

min Imut = J12 + Jag + J32 + Jug
V12,V24,V32,Va8,0

st Vig € {1, 41112 Voy € {—1, +1}7%%* (11)
ng c {_17+1}n><327v218 c {_17_’_1}n><487

where Jyo, Jog, J32 and Jyg are the objective functions where we set ¢ =
12,24,32,48 in Eq. (10). Note that, there is no hyper-parameter between these
four terms, which reveals our multi-task learning strategy is not tricky.

Multi-task hash training strategy enables us to learn intermediate represen-
tations and hash functions of different code-lengths simultaneously, saving com-
putation time and memory space. As the code length grows, the model would
contain more parameters and then get prone to overfitting. This strategy can help
overcome such problems by sharing parts of parameters on the whole network
thus benefiting the training procedure. Additionally, the theoretical analyses in
Sect. 3.4 prove that our strategy is efficient.

3.3 Learning Algorithm

In this section, we present an alternating learning algorithm to learn V' and
© of Eq. (10). The pseudo codes of our algorithm can be found in Appendix.
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The parameters are learned alternatively, which means we update one parameter
with another parameter fixed. The details are presented below.

Normally, we are only given the database points Y = {yj }?:1 and the pair-
wise supervised information S between them, we can learn hash-codes and hash
functions by sampling a subset or the whole set of Y as the query set X for train-
ing, i.e., X C Y. To accelerate the training procedure, we construct a subset X
of database Y instead of using the whole database. Hence, we only consider the

item related to V in Jp of Eq. (10).

Learn © with V fixed. When V is fixed, we learn and update the parameter
O of our neural network by back-propagation (BP) algorithm.

Specifically, for each query point x* in the query points, the gradient can be
calculated as:

0J s dJg 0Jp
ozt~ Oz +A 0zt Tt Ozt

_ m idT j i i
- Zid [(z'v" —eSi) v/ + ANu' —2")] , (12)
where z' = hgof:(x?,0). Once we have the gz{,, we can compute g—‘é based on

gj,; using the chain rule and the back propagation algorithm to update ©.

Learn V with O fixed. When O is fixed, we can easily reformulate the Eq. (10)
as follows:

min J(V) = tr (V [27VZT = 2e27S =2V ]) 4 u >0 [1-Visl +e "
st Ve {-1,+1}"¢,

where Z = [z',2%,...,2"] € [-1,+1]™*¢, 1 =[1,1,...,1] € {1}, V ={V; =

I(y’ € X)uj}?lel € R™*¢, I(-) is the indicator function, and “€” is a constant

independent of V. For convenience, we let Q = (Z'VZT —2cZTS -2V )T,

Then we can rewrite this problem as:

mvin J(V)=tr (VQT) + ,uzk:l [1-Vikl+e
s.t. Ve {-1,+1}""c.

(14)

To ease this problem, we update one bit a time. We alternatively update one
column of V with the other columns fixed. Hence, the optimal solution of this
bit by bit problem is:

= —sign(Qu i +pul"),1-Vip >0

T(Ver) = { —sign(Qup —pl"), 1-Vip <0 - 12)

3.4 Out-of-Sample Extension and Model Analyses

After completing the learning procedure, hash-codes for all the database points
can be easily generated. As for the point x, in query points, we can use
u? = sign(heof:(x9,0)) to generate binary hash-codes. The total computa-
tional complexity for training our piecewise hashing is O(n). For the train-
ing complexity, while the complexity of separate training without multi-task
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is O4(n) = 40(n), multi-task strategy accelerates model training by saving 70%
time cost with the complexity of Ogmuiti—task(n) &~ 1.20(n). Thus, our proposal
of simultaneously training hash functions of different lengths is theoretically
efficient.

4 Experiments

In this section, we evaluate the performance of our proposed method on both fine-
grained and generic datasets, and then compare with state-of-the-art approaches.

We evaluate the performance of our proposed method on six datasets, i.e.,
CUB [21], Aircraft [17], NABirds [8], VegFru [9], Food101 [3] and CIFAR-10 [11].
For the above datasets, we follow the standard split proposed with these datasets,
while two images will be treated as a ground-truth similar pair if they share
the same label. We evaluate the retrieval performance by adopting two evalua-
tion metrics: mean Average Precision (mAP) and Precision-recall Curves (PR
Curves) based on lookup. Details are available in Appendix. All the data are
reported with average values running five times. We compare our deep piecewise
hashing method with several state-of-the-art hashing methods, including shal-
low methods, i.e., LSH [6], ITQ [7], SH [27], SDH [19] and KSH [16], and deep
supervised methods, i.e., DSH [15], DPSH [13], HashNet [4], and ADSH [10]. For
all deep hashing methods, we use raw images resized to 224 x 224 as inputs. For
traditional shallow methods, we extract 4096-dimensional deep features by the
VGG-16 model pre-trained with ImageNet to conduct fair comparisons. Besides,
for all the state-of-the-art hashing methods, we prefer to employ the hyper-
parameters introduced in their papers.

The mAP results on six datasets are presented in Table 1. Additional results
of PR Curves and Top-5K mAP on all the datasets are available in Appendix.

Search Accuracy on the Fine-Grained Datasets: Our proposed method
with the multi-task learning strategy outperforms other hashing methods across
different code-lengths on fine-grained datasets. Specifically, the mAP of our
piecewise hashing obtains relative improvements over the next-best state-of-the-
art methods of 14.36%, 37.52%, 32.82%, and 24.30% on CUB. We notice that
similar improvements are achieved on other fine-grained datasets.

Search Accuracy on the Generic Dataset: Moreover, as shown in Table1,
our piecewise hashing still outperforms other hashing methods on the generic
dataset, i.e., CIFAR-10, obtaining significant increment of 1.90%, 4.53%, 2.85%,
and 2.57% for different lengths of hash codes, respectively.
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Table 1. Comparisons of mAP w.r.t. different number of bits on six datasets, CIFAR-
10, CUB, Aircraft, NABirds, VegFru and Food101. Best in bold.

Method |Backbone|CIFAR-10 CUB Aircraft
12 bits |24 bits|32 bits|48 bits|12 bits|24 bits|32 bits |48 bits |12 bits|24 bits|32 bits|48 bits

LSH — 0.1162 |0.1215 [0.1224 |0.1244 |0.0152 [0.0235 |0.0288 [0.0415 |0.0169 [0.0219 |0.0238 |0.0282
SH 0.1316 |0.1289 [0.1287 |0.1274 |0.0666 [0.0809 |0.0893 |0.1048 |0.0328 [0.0385 |0.0404 |0.0428
ITQ — 0.1544 |0.1607 [0.1630 |0.1656 |0.0855 [0.1196 |0.1376 [0.1549 |0.0438 [0.0528 |0.0582 |0.0605
KSH — 0.2353 |0.2563 [0.2669 |0.2763 |0.1125 [0.1502 |0.1722 |0.1954 |0.0557 [0.0738 |0.0814 |0.0892
SDH 0.1746 |0.2140 [0.2115 |0.2362 |0.0964 [0.1442 |0.1491 |0.1827 |0.0489 [0.0636 |(0.0690 |0.0765
DPSH |ResNet50(0.6872 (0.7024 |0.7281 |0.7437 |0.0685 |0.0885 |0.1008 [0.1148 |0.0874 |0.1087 |0.1354 |0.1394
DSH ResNet50(0.7230 (0.7644 [0.7746 |0.7920 |0.1360 |0.1899 |0.2237 |0.2744 |0.0814 |0.1066 |0.1221 |0.1445

HashNet|ResNet50(0.7261 (0.7614 |0.7858 |0.7950 |0.1203 |0.1777 |0.1993 |0.2213 |0.1491 |0.1775 |0.1942 |0.2032
ADSH |ResNet50(0.6599 (0.7413 |0.7590 |0.7672 |0.0209 |0.1002 |0.2997 |0.4535 |0.0924 |0.2314 |0.3204 |0.4278
Ours VGG-16 |0.7451/0.8097|0.8143|0.8207|0.2796|0.5651|0.6279/0.6956 |0.4392|0.5662|0.5997|0.6296

Method |Backbone|NABirds VegFru Food101
12 bits |24 bits|32 bits|48 bits|12 bits|24 bits|32 bits |48 bits |12 bits|24 bits|32 bits|48 bits

LSH — 0.0064 |0.0096 [0.0132 |0.0201 |0.0077 [0.0117 |0.0147 |0.0207 |0.0158 [0.0199 (0.0221 |0.0279
SH 0.0258 |0.0437 [0.0470 |0.0660 |0.0258 [0.0437 |0.0549 [0.0660 |0.0410 [0.0480 |0.0494 |0.0532
ITQ — 0.0351 |0.0591 [0.0668 |0.0782 |0.0306 [0.0569 |0.0711 |0.0866 |0.0559 [0.0748 |0.0831 |0.0939
KSH — 0.0396 |0.0645 [0.0768 |0.0915 |0.0353 [0.0006 |0.0923 |0.1096 |0.0804 [0.0954 (0.1040 |0.1099
SDH 0.0327 |0.0637 [0.0814 |0.0945 |0.0384 [0.0659 |0.0868 |0.1085 |0.0719 [0.1048 (0.1167 |0.1295
DPSH |ResNet50(0.0159 (0.0225 |0.0241 |0.0380 |0.0375 |0.0541 [0.0731 |0.0931 |0.0795 |0.1059 (0.1370 |0.2025
DSH ResNet50(0.0139 |0.0225 |0.0304 (0.0392 |0.0537 |0.0786 |0.0970 |0.1119 |0.1225 |0.2392 |0.2643 |0.2961

HashNet|ResNet50(0.0157 |0.0242 |0.0276 |0.0351 |0.0726 |0.1157 |0.1284 |0.1568 |0.2186 |0.3222 |0.3515 |0.4109
ADSH |ResNet50(0.0124 (0.0998 |0.1782 |0.3041 |0.0838 |0.2460 |0.3679 |0.5285 |0.0296 |0.0499 (0.1605 |0.4835
Ours VGG-16 |0.0940/0.2619|0.3419|0.4093|0.2974|0.5525|0.6058/0.6674 |0.4177|0.5896|/0.6284|0.6666

5 Conclusion

In this paper, we presented a piecewise hashing method for the novel fine-grained
hashing task. One of the key contributions was the local stream with piecewise
part-level attention on bilinear representations to capture the discriminative cues
for effectively representing fine-grained parts. Besides, our proposed multi-task
training strategy can decrease the training and inference time while concurrently
learned several hash functions and improving the search accuracy. Experimental
results on diverse fine-grained datasets and the generic dataset showed the supe-
riority of our method. In the future, we would like to explore novel fine-grained
hashing methods under the unsupervised setting.
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